These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 34502527)
41. Postnatal triglyceride accumulation is regulated by mineralocorticoid receptor activation under basal and stress conditions. Faught E; Vijayan MM J Physiol; 2019 Oct; 597(19):4927-4941. PubMed ID: 31246274 [TBL] [Abstract][Full Text] [Related]
42. Characterization of the human mineralocorticoid receptor gene 5'-regulatory region: evidence for differential hormonal regulation of two alternative promoters via nonclassical mechanisms. Zennaro MC; Le Menuet D; Lombès M Mol Endocrinol; 1996 Dec; 10(12):1549-60. PubMed ID: 8961265 [TBL] [Abstract][Full Text] [Related]
43. Glucocorticoid receptor plays an indispensable role in mineralocorticoid receptor-dependent transcription in GR-deficient BE(2)C and T84 cells in vitro. Tsugita M; Iwasaki Y; Nishiyama M; Taguchi T; Shinahara M; Taniguchi Y; Kambayashi M; Nishiyama A; Gomez-Sanchez CE; Terada Y; Hashimoto K Mol Cell Endocrinol; 2009 Apr; 302(1):18-25. PubMed ID: 19146914 [TBL] [Abstract][Full Text] [Related]
44. Inhibition of mineralocorticoid activity by the beta-isoform of the human glucocorticoid receptor. Bamberger CM; Bamberger AM; Wald M; Chrousos GP; Schulte HM J Steroid Biochem Mol Biol; 1997 Jan; 60(1-2):43-50. PubMed ID: 9182857 [TBL] [Abstract][Full Text] [Related]
45. Soy Protein Nanofiber Scaffolds for Uniform Maturation of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium. Phelan MA; Kruczek K; Wilson JH; Brooks MJ; Drinnan CT; Regent F; Gerstenhaber JA; Swaroop A; Lelkes PI; Li T Tissue Eng Part C Methods; 2020 Aug; 26(8):433-446. PubMed ID: 32635833 [TBL] [Abstract][Full Text] [Related]
47. The ligand-dependent interaction of mineralocorticoid receptor with coactivator and corepressor peptides suggests multiple activation mechanisms. Hultman ML; Krasnoperova NV; Li S; Du S; Xia C; Dietz JD; Lala DS; Welsch DJ; Hu X Mol Endocrinol; 2005 Jun; 19(6):1460-73. PubMed ID: 15761029 [TBL] [Abstract][Full Text] [Related]
48. Roles of the Glucocorticoid and Mineralocorticoid Receptors in Skin Pathophysiology. Sevilla LM; Pérez P Int J Mol Sci; 2018 Jun; 19(7):. PubMed ID: 29966221 [TBL] [Abstract][Full Text] [Related]
49. Targeted skin overexpression of the mineralocorticoid receptor in mice causes epidermal atrophy, premature skin barrier formation, eye abnormalities, and alopecia. Sainte Marie Y; Toulon A; Paus R; Maubec E; Cherfa A; Grossin M; Descamps V; Clemessy M; Gasc JM; Peuchmaur M; Glick A; Farman N; Jaisser F Am J Pathol; 2007 Sep; 171(3):846-60. PubMed ID: 17675581 [TBL] [Abstract][Full Text] [Related]
50. Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells. Chantong B; Kratschmar DV; Nashev LG; Balazs Z; Odermatt A J Neuroinflammation; 2012 Nov; 9():260. PubMed ID: 23190711 [TBL] [Abstract][Full Text] [Related]
51. Toward the defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells. Vaajasaari H; Ilmarinen T; Juuti-Uusitalo K; Rajala K; Onnela N; Narkilahti S; Suuronen R; Hyttinen J; Uusitalo H; Skottman H Mol Vis; 2011 Feb; 17():558-75. PubMed ID: 21364903 [TBL] [Abstract][Full Text] [Related]
52. Retinal pigment epithelial cells as a therapeutic tool and target against retinopathies. Pavan B; Dalpiaz A Drug Discov Today; 2018 Sep; 23(9):1672-1679. PubMed ID: 29908265 [TBL] [Abstract][Full Text] [Related]
53. PSCs Reveal PUFA-Provoked Mitochondrial Stress as a Central Node Potentiating RPE Degeneration in Bietti's Crystalline Dystrophy. Zhang Z; Yan B; Gao F; Li Q; Meng X; Chen P; Zhou L; Deng W; Li C; Xu W; Han S; Feng H; Li Y; Chen J; Yin Z; Liao C; Tse HF; Xu A; Lian Q Mol Ther; 2020 Dec; 28(12):2642-2661. PubMed ID: 32755565 [TBL] [Abstract][Full Text] [Related]
54. [Corticosteroid hormones: mechanisms involved in the recognition of aldosterone by mineralocorticoid receptors]. Hellal-Levy C; Fagart J; Souque A; Rafestin-Oblin ME J Soc Biol; 1999; 193(4-5):355-60. PubMed ID: 10689617 [TBL] [Abstract][Full Text] [Related]
55. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Buchholz DE; Hikita ST; Rowland TJ; Friedrich AM; Hinman CR; Johnson LV; Clegg DO Stem Cells; 2009 Oct; 27(10):2427-34. PubMed ID: 19658190 [TBL] [Abstract][Full Text] [Related]
56. Claudin-3 and claudin-19 partially restore native phenotype to ARPE-19 cells via effects on tight junctions and gene expression. Peng S; Wang SB; Singh D; Zhao PY; Davis K; Chen B; Adelman RA; Rizzolo LJ Exp Eye Res; 2016 Oct; 151():179-89. PubMed ID: 27593915 [TBL] [Abstract][Full Text] [Related]
57. Induction of FKBP51 by aldosterone in intestinal epithelium. Petrovich E; Asher C; Garty H J Steroid Biochem Mol Biol; 2014 Jan; 139():78-87. PubMed ID: 24139875 [TBL] [Abstract][Full Text] [Related]
58. Differential distribution of steroid hormone signaling networks in the human choroid-retinal pigment epithelial complex. Galindez SM; Keightley A; Koulen P BMC Ophthalmol; 2022 Oct; 22(1):406. PubMed ID: 36266625 [TBL] [Abstract][Full Text] [Related]
59. Mechanisms of ligand specificity of the mineralocorticoid receptor. Fuller PJ; Yao Y; Yang J; Young MJ J Endocrinol; 2012 Apr; 213(1):15-24. PubMed ID: 22159507 [TBL] [Abstract][Full Text] [Related]