These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34502555)

  • 21. Influence of metal ions on bioremediation activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2.
    Guzik U; Hupert-Kocurek K; Sałek K; Wojcieszyńska D
    World J Microbiol Biotechnol; 2013 Feb; 29(2):267-73. PubMed ID: 23014843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A New Way of Belonging: Active-Site Investigation of L-DOPA Dioxygenase, a VOC Family Enzyme from Lincomycin Biosynthesis.
    Colabroy KL; Horwitz AD; Basciano VR; Fu Y; Travitz KM; Robinson MK; Shimanski BA; Hoffmann TW
    Biochemistry; 2019 Dec; 58(48):4794-4798. PubMed ID: 31710815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Function of different amino acid residues in the reaction mechanism of gentisate 1,2-dioxygenases deduced from the analysis of mutants of the salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans.
    Eppinger E; Ferraroni M; Bürger S; Steimer L; Peng G; Briganti F; Stolz A
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1425-37. PubMed ID: 26093111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring allosteric activation of LigAB from Sphingobium sp. strain SYK-6 through kinetics, mutagenesis and computational studies.
    Barry KP; Ngu A; Cohn EF; Cote JM; Burroughs AM; Gerbino JP; Taylor EA
    Arch Biochem Biophys; 2015 Feb; 567():35-45. PubMed ID: 25562402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of a reverse transcription-PCR assay to monitor regulation of the catabolic nahAc gene during phenanthrene degradation.
    Marlowe EM; Wang JM; Pepper IL; Maier RM
    Biodegradation; 2002; 13(4):251-60. PubMed ID: 12521289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the 3-O-methylgallate dioxygenase gene and evidence of multiple 3-O-methylgallate catabolic pathways in Sphingomonas paucimobilis SYK-6.
    Kasai D; Masai E; Miyauchi K; Katayama Y; Fukuda M
    J Bacteriol; 2004 Aug; 186(15):4951-9. PubMed ID: 15262932
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fusion of dioxygenase and lignin-binding domains in a novel secreted enzyme from cellulolytic Streptomyces sp. SirexAA-E.
    Bianchetti CM; Harmann CH; Takasuka TE; Hura GL; Dyer K; Fox BG
    J Biol Chem; 2013 Jun; 288(25):18574-87. PubMed ID: 23653358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions.
    Sugimoto K; Senda T; Aoshima H; Masai E; Fukuda M; Mitsui Y
    Structure; 1999 Aug; 7(8):953-65. PubMed ID: 10467151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of an extradiol dioxygenase involved in the catabolism of lignin-derived biphenyl.
    Kuatsjah E; Chen HM; Withers SG; Eltis LD
    FEBS Lett; 2017 Apr; 591(7):1001-1009. PubMed ID: 28247503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular mechanism of strict substrate specificity of an extradiol dioxygenase, DesB, derived from Sphingobium sp. SYK-6.
    Sugimoto K; Senda M; Kasai D; Fukuda M; Masai E; Senda T
    PLoS One; 2014; 9(3):e92249. PubMed ID: 24657997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alternative routes of aromatic catabolism in Pseudomonas acidovorans and Pseudomonas putida: gallic acid as a substrate and inhibitor of dioxygenases.
    Sparnins VL; Dagley S
    J Bacteriol; 1975 Dec; 124(3):1374-81. PubMed ID: 1194238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Benzoate degradation by Rhodococcus opacus 1CP after dormancy: Characterization of dioxygenases involved in the process.
    Solyanikova IP; Emelyanova EV; Borzova OV; Golovleva LA
    J Environ Sci Health B; 2016; 51(3):182-91. PubMed ID: 26669259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A study on the structure, mechanism, and biochemistry of kanamycin B dioxygenase (KanJ)-an enzyme with a broad range of substrates.
    Mrugała B; Miłaczewska A; Porebski PJ; Niedzialkowska E; Guzik M; Minor W; Borowski T
    FEBS J; 2021 Feb; 288(4):1366-1386. PubMed ID: 32592631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of 17O-labeled substrate and inhibitors to protocatechuate 4,5-dioxygenase-nitrosyl complex. Evidence for direct substrate binding to the active site Fe2+ of extradiol dioxygenases.
    Arciero DM; Lipscomb JD
    J Biol Chem; 1986 Feb; 261(5):2170-8. PubMed ID: 3003098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PcaU, a transcriptional activator of genes for protocatechuate utilization in Acinetobacter.
    Gerischer U; Segura A; Ornston LN
    J Bacteriol; 1998 Mar; 180(6):1512-24. PubMed ID: 9515921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradation of phenanthrene by Pseudomonas sp. strain PPD: purification and characterization of 1-hydroxy-2-naphthoic acid dioxygenase.
    Deveryshetty J; Phale PS
    Microbiology (Reading); 2009 Sep; 155(Pt 9):3083-3091. PubMed ID: 19574301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EPR and Mössbauer studies of protocatechuate 4,5-dioxygenase. Characterization of a new Fe2+ environment.
    Arciero DM; Lipscomb JD; Huynh BH; Kent TA; Münck E
    J Biol Chem; 1983 Dec; 258(24):14981-91. PubMed ID: 6317682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning and functional study of a novel aromatic-ring-hydroxylating dioxygenase gene.
    Zhou HW; Zhou MJ
    Nan Fang Yi Ke Da Xue Xue Bao; 2007 May; 27(5):717-9. PubMed ID: 17644853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the terephthalate degradation genes of Comamonas sp. strain E6.
    Sasoh M; Masai E; Ishibashi S; Hara H; Kamimura N; Miyauchi K; Fukuda M
    Appl Environ Microbiol; 2006 Mar; 72(3):1825-32. PubMed ID: 16517628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arthrobacter phenanthrenivorans sp. nov., to accommodate the phenanthrene-degrading bacterium Arthrobacter sp. strain Sphe3.
    Kallimanis A; Kavakiotis K; Perisynakis A; Spröer C; Pukall R; Drainas C; Koukkou AI
    Int J Syst Evol Microbiol; 2009 Feb; 59(Pt 2):275-9. PubMed ID: 19196765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.