These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34502573)

  • 21. Tire-Road Contact Area on Asphalt Concrete Pavement and Its Relationship with the Skid Resistance.
    Yun D; Hu L; Tang C
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32019120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating Pavement Roughness by Fusing Color and Depth Data Obtained from an Inexpensive RGB-D Sensor.
    Mahmoudzadeh A; Golroo A; Jahanshahi MR; Firoozi Yeganeh S
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of the pavement friction coefficient evolution caused by traffic flow on the risk of motorway horizontal curves.
    Xu G; Xu J; Shan H; Gao C; Ran J; Ma Y; Yao Y
    PLoS One; 2022; 17(8):e0266519. PubMed ID: 35994492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crack Segmentation Extraction and Parameter Calculation of Asphalt Pavement Based on Image Processing.
    Li Z; Yin C; Zhang X
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Research on surface treatment technology for quickly improving the skid resistance of tunnel concrete pavement.
    Lei J; Zhao F; Wang Y; Ren X
    PLoS One; 2024; 19(3):e0295938. PubMed ID: 38466758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impacts of pavement types on in-vehicle noise and human health.
    Li Q; Qiao F; Yu L
    J Air Waste Manag Assoc; 2016 Jan; 66(1):87-96. PubMed ID: 26569334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying the impact of coefficient of thermal expansion of overlay concrete on unbonded concrete overlay performance.
    Sabih G; Rahman T; Tarefder RA
    Heliyon; 2018 Oct; 4(10):e00855. PubMed ID: 30364799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Study on the Design Depth of Permeable Road Pavement through Dynamic Load Experiment.
    Hsing CH; Siao JH; Wang YM
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cost-Effective Approaches Based on Machine Learning to Predict Dynamic Modulus of Warm Mix Asphalt with High Reclaimed Asphalt Pavement.
    Dao DV; Nguyen NL; Ly HB; Pham BT; Le TT
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32717910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The rutting model of semi-rigid asphalt pavement based on RIOHTRACK full-scale track.
    Kou B; Cao J; Huang W; Ma T
    Math Biosci Eng; 2023 Feb; 20(5):8124-8145. PubMed ID: 37161189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A machine learning-based approach to assess impacts of autonomous vehicles on pavement roughness.
    Chen C; Song Y; Wang YD; Hu X; Liu J
    Philos Trans A Math Phys Eng Sci; 2023 Sep; 381(2254):20220176. PubMed ID: 37454691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pavement Quality Evaluation Using Connected Vehicle Data.
    Mahlberg JA; Li H; Zachrisson B; Leslie DK; Bullock DM
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Novel 0.1 mm 3D Laser Imaging Technology for Pavement Safety Measurement.
    Yang G; Wang KCP; Li JQ; Wang G
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pothole detection and International Roughness Index (IRI) calculation using ATVs for road monitoring.
    Guerra K; Raymundo C; Silvera M; Zapata G; Moguerza JM
    Sci Rep; 2024 Aug; 14(1):19761. PubMed ID: 39187644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Can Machine Learning and PS-InSAR Reliably Stand in for Road Profilometric Surveys?
    Fiorentini N; Maboudi M; Leandri P; Losa M
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34066242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved 3D Pavement Texture Reconstruction Method Based on Interference Fringe via Optimizing the Post-Processing Method.
    Chu C; Wei Y; Wang H
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Concept of Similarity Method for Prediction of Fatigue Life of Pavement Structures with HiMA Binder in Asphalt Layers.
    Złotowska M; Nagórski R; Błażejowski K
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33498367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Residual Fatigue Properties of Asphalt Pavement after Long-Term Field Service.
    Cui P; Xiao Y; Fang M; Chen Z; Yi M; Li M
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29932097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison and Analysis of Several Clustering Algorithms for Pavement Crack Segmentation Guided by Computational Intelligence.
    Wang D; Zhang Z; Zhou J; Zhang B; Li M
    Comput Intell Neurosci; 2022; 2022():8965842. PubMed ID: 36097558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic identification of pavement cracks in public roads using an optimized deep convolutional neural network model.
    Lv Z; Cheng C; Lv H
    Philos Trans A Math Phys Eng Sci; 2023 Sep; 381(2254):20220169. PubMed ID: 37454685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.