These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 34502666)

  • 1. Development of the Heterodyne Laser Encoder System for the X-Y Positioning Stage.
    Chang CP; Tu TC; Huang SR; Wang YC; Chang SC
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Analog Interpolation Method for Heterodyne Laser Interferometer.
    Chang CP; Chang SC; Wang YC; He PY
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometrical Characterisation of a 2D Laser System and Calibration of a Cross-Grid Encoder by Means of a Self-Calibration Methodology.
    Torralba M; Díaz-Pérez LC; Valenzuela M; Albajez JA; Yagüe-Fabra JA
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28858239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology.
    Chen B; Cheng L; Yan L; Zhang E; Lou Y
    Rev Sci Instrum; 2017 Mar; 88(3):035114. PubMed ID: 28372378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser.
    Cui C; Feng Q; Zhang B; Zhao Y
    Opt Express; 2016 Mar; 24(6):6735-48. PubMed ID: 27136860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A laser interferometer for measuring straightness and its position based on heterodyne interferometry.
    Chen B; Zhang E; Yan L; Li C; Tang W; Feng Q
    Rev Sci Instrum; 2009 Nov; 80(11):115113. PubMed ID: 19947763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology.
    Lou Y; Yan L; Chen B; Zhang S
    Opt Express; 2017 Mar; 25(6):6805-6821. PubMed ID: 28381023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters.
    Chen B; Xu B; Yan L; Zhang E; Liu Y
    Opt Express; 2015 Apr; 23(7):9052-73. PubMed ID: 25968740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of submicron precision three-dimensional low cross-interference air-floating motion stage.
    Zhang F; Huang Q; Ye Y; Cheng B; Zhang Z; Cheng R; Zhang L; Li H
    Rev Sci Instrum; 2023 Jun; 94(6):. PubMed ID: 37862531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cylindrical-type nanometer-resolution laser diffractive optical encoder.
    Hsieh CT; Lee CK
    Appl Opt; 1999 Aug; 38(22):4743-50. PubMed ID: 18323962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal and Geometric Error Compensation Approach for an Optical Linear Encoder.
    Gurauskis D; Kilikevičius A; Kasparaitis A
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Five-degrees-of-freedom diffractive laser encoder.
    Liu CH; Huang HL; Lee HW
    Appl Opt; 2009 May; 48(14):2767-77. PubMed ID: 19424401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a 6-DoF motion system for realizing a linear datum for geometric measurements.
    Wang S; Cui J; Tan J; Liu Y
    Rev Sci Instrum; 2016 Aug; 87(8):085115. PubMed ID: 27587168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design for A Highly Stable Laser Source Based on the Error Model of High-Speed High-Resolution Heterodyne Interferometers.
    Yang H; Yin Z; Yang R; Hu P; Li J; Tan J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterodyne Wollaston laser encoder for measurement of in-plane displacement.
    Hsieh HL; Chen W
    Opt Express; 2016 Apr; 24(8):8693-707. PubMed ID: 27137304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a three-degree-of-freedom laser linear encoder for error measurement of a high precision stage.
    Huang HL; Liu CH; Jywe WY; Wang MS; Fang TH
    Rev Sci Instrum; 2007 Jun; 78(6):066103. PubMed ID: 17614647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic model of nonlinearity errors in laser heterodyne interferometry.
    Chen H; Jiang B; Shi Z
    Appl Opt; 2018 May; 57(14):3890-3901. PubMed ID: 29791357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two Degree-of-Freedom Fiber-Coupled Heterodyne Grating Interferometer with Milli-Radian Operating Range of Rotation.
    Yang F; Zhang M; Zhu Y; Ye W; Wang L; Xia Y
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of straightness without Abbe error using an enhanced differential plane mirror interferometer.
    Jin T; Ji H; Hou W; Le Y; Shen L
    Appl Opt; 2017 Jan; 56(3):607-610. PubMed ID: 28157917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-precision miniaturized low-cost reflective grating laser encoder with nanometric accuracy.
    Goudarzi Khouygani MH; Jeng JY
    Appl Opt; 2020 Jul; 59(19):5764-5771. PubMed ID: 32609702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.