These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 34502807)

  • 1. Restoration of Remote PPG Signal through Correspondence with Contact Sensor Signal.
    Kim SE; Yu SG; Kim NH; Suh KH; Lee EC
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.
    Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW
    Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulse Rate Variability Analysis Using Remote Photoplethysmography Signals.
    Yu SG; Kim SE; Kim NH; Suh KH; Lee EC
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of makeup on remote-PPG monitoring.
    Wang W; Shan C
    Biomed Phys Eng Express; 2020 Mar; 6(3):035004. PubMed ID: 33438649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waveform Analysis for Camera-based Photoplethysmography Imaging.
    Paul M; Yu X; Wu B; Weiss C; Antink CH; Blazek V; Leonhardt S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2713-2718. PubMed ID: 31946455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SVR-EEMD: An Improved EEMD Method Based on Support Vector Regression Extension in PPG Signal Denoising.
    Liu G; Hu X; Wang E; Zhou G; Cai J; Zhang S
    Comput Math Methods Med; 2019; 2019():5363712. PubMed ID: 31915461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Study on the Effect of Contact Pressure during Physical Activity on Photoplethysmographic Heart Rate Measurements.
    Scardulla F; D'Acquisto L; Colombarini R; Hu S; Pasta S; Bellavia D
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Multi-Wavelength Quality Assessment of Photoplethysmography Signals Using Modulation Spectrum Shape Features.
    Tiwari A; Gray G; Bondi P; Mahnam A; Falk TH
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CorNET: Deep Learning Framework for PPG-Based Heart Rate Estimation and Biometric Identification in Ambulant Environment.
    Biswas D; Everson L; Liu M; Panwar M; Verhoef BE; Patki S; Kim CH; Acharyya A; Van Hoof C; Konijnenburg M; Van Helleputte N
    IEEE Trans Biomed Circuits Syst; 2019 Apr; 13(2):282-291. PubMed ID: 30629514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG).
    Alam J; Khan MF; Khan MA; Singh R; Mundazeer M; Kumar P
    J Cardiovasc Transl Res; 2024 Jun; 17(3):669-684. PubMed ID: 38010481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation Model of the Photoplethysmography Signal for Vital Sign Extraction.
    Chen M; Zhu Q; Wu M; Wang Q
    IEEE J Biomed Health Inform; 2021 Apr; 25(4):969-977. PubMed ID: 32750983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In obstructive sleep apnea patients, automatic determination of respiratory arrests by photoplethysmography signal and heart rate variability.
    Bozkurt MR; Uçar MK; Bozkurt F; Bilgin C
    Australas Phys Eng Sci Med; 2019 Dec; 42(4):959-979. PubMed ID: 31515685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of photoplethysmography signals for healthcare systems: An in-depth review.
    Loh HW; Xu S; Faust O; Ooi CP; Barua PD; Chakraborty S; Tan RS; Molinari F; Acharya UR
    Comput Methods Programs Biomed; 2022 Apr; 216():106677. PubMed ID: 35139459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal Quality Assessment of PPG Signals using STFT Time-Frequency Spectra and Deep Learning Approaches.
    Chen J; Sun K; Sun Y; Li X
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1153-1156. PubMed ID: 34891492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory Rate Estimation using PPG: A Deep Learning Approach.
    Bian D; Mehta P; Selvaraj N
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5948-5952. PubMed ID: 33019328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Multi-Parametric Sensor System for Comprehensive Multi-Wavelength Photoplethysmography Characterization.
    Lambert Cause J; Solé Morillo Á; da Silva B; García-Naranjo JC; Stiens J
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility Study of Deep Neural Network for Heart Rate Estimation from Wearable Photoplethysmography and Acceleration Signals.
    Chung H; Ko H; Lee H; Lee J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3633-3636. PubMed ID: 31946663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normalization of photoplethysmography using deep neural networks for individual and group comparison.
    Kim JW; Choi SW
    Sci Rep; 2022 Feb; 12(1):3133. PubMed ID: 35210522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discriminative Signatures for Remote-PPG.
    Wang W; den Brinker AC; de Haan G
    IEEE Trans Biomed Eng; 2020 May; 67(5):1462-1473. PubMed ID: 31484105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Contact Pressure in Reflectance Photoplethysmography in an In Vitro Tissue-Vessel Phantom.
    May JM; Mejía-Mejía E; Nomoni M; Budidha K; Choi C; Kyriacou PA
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.