These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34502868)

  • 1. Small-Angle Particle Counting Coupled Photometry for Real-Time Detection of Respirable Particle Size Segmentation Mass Concentration.
    Zhang R; Zhao H
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Workplace aerosol mass concentration measurement using optical particle counters.
    Görner P; Simon X; Bémer D; Lidén G
    J Environ Monit; 2012 Feb; 14(2):420-8. PubMed ID: 22009365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Airborne dust particle counting techniques.
    Sharma SG; Prasad BD
    Environ Monit Assess; 2006 Mar; 114(1-3):191-8. PubMed ID: 16565805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Method for Online Extraction of Small-Angle Scattering Pulse Signals from Particles Based on Variable Forgetting Factor RLS Algorithm.
    Zhang R; Zhao H
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving estimation of indoor exposure to inhalable particles for children in the first year of life.
    Shalat SL; Lioy PJ; Schmeelck K; Mainelis G
    J Air Waste Manag Assoc; 2007 Aug; 57(8):934-9. PubMed ID: 17824283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Angular Light Scattering Measurement of Particulate Matter Mass Concentration for Homogeneous Spherical Particles.
    Chen D; Liu X; Han J; Jiang M; Wang Z; Qi J
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31096589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving indoor air quality through an air purifier able to reduce aerosol particulate matter (PM) and volatile organic compounds (VOCs): Experimental results.
    Fermo P; Artíñano B; De Gennaro G; Pantaleo AM; Parente A; Battaglia F; Colicino E; Di Tanna G; Goncalves da Silva Junior A; Pereira IG; Garcia GS; Garcia Goncalves LM; Comite V; Miani A
    Environ Res; 2021 Jun; 197():111131. PubMed ID: 33865819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of personal direct-reading dust monitors for the measurement of airborne inhalable dust.
    Thorpe A
    Ann Occup Hyg; 2007 Jan; 51(1):97-112. PubMed ID: 16799158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving estimation of real-time concentration for inhalable particles < 10 microm from a light scattering monitor.
    Huang CH; Tai CY
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):332-8. PubMed ID: 20390874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhalable and Respirable Particulate and Endotoxin Exposures in Kentucky Equine Farms.
    Hwang J; Golla V; Metwali N; Thorne PS
    J Agromedicine; 2020 Apr; 25(2):179-189. PubMed ID: 31430228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of personal exposure to inhalable indoor and outdoor particulate matter for student residents of an academic campus (IIT-Kanpur).
    Devi JJ; Gupta T; Tripathi SN; Ujinwal KK
    Inhal Toxicol; 2009 Dec; 21(14):1208-22. PubMed ID: 19807217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory evaluation of a low-cost, real-time, aerosol multi-sensor.
    Vercellino RJ; Sleeth DK; Handy RG; Min KT; Collingwood SC
    J Occup Environ Hyg; 2018 Jul; 15(7):559-567. PubMed ID: 29683781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of the RespiCon personal aerosol sampler in forest products industry workplaces.
    Tatum V; Ray AE; Rovell-Rixx D
    AIHA J (Fairfax, Va); 2002; 63(3):311-6. PubMed ID: 12173181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indoor particle dynamics in a school office: determination of particle concentrations, deposition rates and penetration factors under naturally ventilated conditions.
    Cong XC; Zhao JJ; Jing Z; Wang QG; Ni PF
    Environ Geochem Health; 2018 Dec; 40(6):2511-2524. PubMed ID: 29744699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometry of individual particles between 50 and 750 nm in diameter at the Baltimore Supersite.
    Lake DA; Tolocka MP; Johnston MV; Wexler AS
    Environ Sci Technol; 2003 Aug; 37(15):3268-74. PubMed ID: 12966969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the use of small and cheaper sensors and devices for indicative citizen-based monitoring of respirable particulate matter.
    Jovašević-Stojanović M; Bartonova A; Topalović D; Lazović I; Pokrić B; Ristovski Z
    Environ Pollut; 2015 Nov; 206():696-704. PubMed ID: 26342459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of large aerosol particle size by elutriation.
    Tillery M; Buchan R
    Appl Occup Environ Hyg; 2002 Oct; 17(10):717-22. PubMed ID: 12363213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.