These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34502980)

  • 21. Horizontal Motion of a Superhydrophobic Substrate Affects the Drop Bouncing Dynamics.
    Zhan H; Lu C; Liu C; Wang Z; Lv C; Liu Y
    Phys Rev Lett; 2021 Jun; 126(23):234503. PubMed ID: 34170170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superhydrophobic porous networks for enhanced droplet shedding.
    Liu Y; Wang Z
    Sci Rep; 2016 Sep; 6():33817. PubMed ID: 27644452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.
    Li N; Wu L; Yu C; Dai H; Wang T; Dong Z; Jiang L
    Adv Mater; 2018 Feb; 30(8):. PubMed ID: 29315840
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pancake bouncing on superhydrophobic surfaces.
    Liu Y; Moevius L; Xu X; Qian T; Yeomans JM; Wang Z
    Nat Phys; 2014 Jul; 10(7):515-519. PubMed ID: 28553363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of high Weber number drops impacting on hydrophobic surfaces with closed micro-cells.
    Zhang R; Hao P; Zhang X; He F
    Soft Matter; 2016 Jun; 12(26):5808-17. PubMed ID: 27306824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Why Drops Bounce on Smooth Surfaces.
    Tadmor R; Yadav SB; Gulec S; Leh A; Dang L; N'guessan HE; Das R; Turmine M; Tadmor M
    Langmuir; 2018 Apr; 34(15):4695-4700. PubMed ID: 29510056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drop Bouncing Dynamics on Ultrathin Films.
    He Z; Tran H; Pack MY
    Langmuir; 2021 Aug; 37(33):10135-10142. PubMed ID: 34379973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drop impact and rebound dynamics on an inclined superhydrophobic surface.
    Yeong YH; Burton J; Loth E; Bayer IS
    Langmuir; 2014 Oct; 30(40):12027-38. PubMed ID: 25216298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supercooled water drops impacting superhydrophobic textures.
    Maitra T; Antonini C; Tiwari MK; Mularczyk A; Imeri Z; Schoch P; Poulikakos D
    Langmuir; 2014 Sep; 30(36):10855-61. PubMed ID: 25157476
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust Superhydrophobic Conical Pillars from Syringe Needle Shape to Straight Conical Pillar Shape for Droplet Pancake Bouncing.
    Song J; Huang L; Zhao C; Wu S; Liu H; Lu Y; Deng X; Carmalt CJ; Parkin IP; Sun Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45345-45353. PubMed ID: 31651139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contact angles of drops on curved superhydrophobic surfaces.
    Viswanadam G; Chase GG
    J Colloid Interface Sci; 2012 Feb; 367(1):472-7. PubMed ID: 22129634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of Superhydrophobic Metal Surfaces for Anti-Icing Applications.
    Montes Ruiz-Cabello FJ; Ibañez-Ibañez P; Paz-Gomez G; Cabrerizo-Vilchez M; Rodriguez-Valverde MA
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30175989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biased Motions of a Droplet on the Inclined Micro-conical Superhydrophobic Surface.
    Li P; Xu X; Yu Y; Wang L; Ji B
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27687-27695. PubMed ID: 34100284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Directional droplet bouncing on a moving superhydrophobic surface.
    Wang M; Shi Y; Wang S; Xu H; Zhang H; Wei M; Wang X; Peng W; Ding H; Song M
    iScience; 2023 Apr; 26(4):106389. PubMed ID: 37013191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coalescence-Induced Swift Jumping of Nanodroplets on Curved Surfaces.
    He X; Zhao L; Cheng J
    Langmuir; 2019 Jul; 35(30):9979-9987. PubMed ID: 31282161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contact time of impacting droplets on a superhydrophobic surface with tunable curvature and groove orientation.
    Guo C; Liu L; Liu C
    J Phys Condens Matter; 2021 Dec; 34(9):. PubMed ID: 34814124
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spontaneous jumping, bouncing and trampolining of hydrogel drops on a heated plate.
    Pham JT; Paven M; Wooh S; Kajiya T; Butt HJ; Vollmer D
    Nat Commun; 2017 Oct; 8(1):905. PubMed ID: 29030546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Jumps, somersaults, and symmetry breaking in Leidenfrost drops.
    Chen S; Bertola V
    Phys Rev E; 2016 Aug; 94(2-1):021102. PubMed ID: 27627234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Steerable directional bouncing and contact time reduction of impacting droplets on superhydrophobic stepped surfaces.
    Du J; Li Y; Wu X; Min Q
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):1032-1044. PubMed ID: 36154970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Directional Droplet Transport Mediated by Circular Groove Arrays. Part I: Experimental Findings.
    Liu C; Legchenkova I; Han L; Ge W; Lv C; Feng S; Bormashenko E; Liu Y
    Langmuir; 2020 Aug; 36(32):9608-9615. PubMed ID: 32787135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.