BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 34503526)

  • 1. Walking with robot-generated haptic forces in a virtual environment: a new approach to analyze lower limb coordination.
    Sorrento GU; Archambault PS; Fung J
    J Neuroeng Rehabil; 2021 Sep; 18(1):136. PubMed ID: 34503526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation and post-adaptation effects of haptic forces on locomotion in healthy young adults.
    Sorrento GU; Archambault PS; Fung J
    J Neuroeng Rehabil; 2018 Mar; 15(1):20. PubMed ID: 29534731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intralimb gait coordination of individuals with stroke using vector coding.
    Celestino ML; van Emmerik R; Barela JA; Gama GL; Barela AMF
    Hum Mov Sci; 2019 Dec; 68():102522. PubMed ID: 31707313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
    Hsiao H; Awad LN; Palmer JA; Higginson JS; Binder-Macleod SA
    Neurorehabil Neural Repair; 2016 Sep; 30(8):743-52. PubMed ID: 26721869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forced use of paretic leg induced by constraining the non-paretic leg leads to motor learning in individuals post-stroke.
    Wu M; Hsu CJ; Kim J
    Exp Brain Res; 2019 Oct; 237(10):2691-2703. PubMed ID: 31407027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and kinematic parameters associated with late braking force and effects on gait performance of stroke patients.
    Ohta M; Tanabe S; Katsuhira J; Tamari M
    Sci Rep; 2023 May; 13(1):7729. PubMed ID: 37173403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow and faster post-stroke walkers have a different trunk progression and braking impulse during gait.
    Duclos NC; Duclos C; Nadeau S
    Gait Posture; 2019 Feb; 68():483-487. PubMed ID: 30616177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overground walking with a constraint force on the nonparetic leg during swing improves weight shift toward the paretic side in people after stroke.
    Park SH; Yan S; Dee W; Keefer R; Roth EJ; Rymer WZ; Wu M
    J Neurophysiol; 2023 Jul; 130(1):43-55. PubMed ID: 37198133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forced Use of the Paretic Leg Induced by a Constraint Force Applied to the Nonparetic Leg in Individuals Poststroke During Walking.
    Hsu CJ; Kim J; Roth EJ; Rymer WZ; Wu M
    Neurorehabil Neural Repair; 2017 Dec; 31(12):1042-1052. PubMed ID: 29145773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical differences between self-paced and fixed-speed treadmill walking in persons after stroke.
    Van Bladel A; De Ridder R; Palmans T; Oostra K; Cambier D
    Hum Mov Sci; 2022 Oct; 85():102983. PubMed ID: 35933827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Study on Overground Gait of Stroke Survivors With a Conventional Cane and a Haptic Cane.
    Lee H; Eizad A; Lee G; Afzal MR; Yoon J; Oh MK; Yoon J
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2183-2192. PubMed ID: 34665734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the effects of delivering integrated kinesthetic and tactile cues to individuals with unilateral hemiparetic stroke during overground walking.
    Afzal MR; Pyo S; Oh MK; Park YS; Yoon J
    J Neuroeng Rehabil; 2018 Apr; 15(1):33. PubMed ID: 29661237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of systematic increases in treadmill walking speed on gait kinematics after stroke.
    Tyrell CM; Roos MA; Rudolph KS; Reisman DS
    Phys Ther; 2011 Mar; 91(3):392-403. PubMed ID: 21252308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery and compensation after robotic assisted gait training in chronic stroke survivors.
    De Luca A; Vernetti H; Capra C; Pisu I; Cassiano C; Barone L; Gaito F; Danese F; Antonio Checchia G; Lentino C; Giannoni P; Casadio M
    Disabil Rehabil Assist Technol; 2019 Nov; 14(8):826-838. PubMed ID: 29741134
    [No Abstract]   [Full Text] [Related]  

  • 15. Biomechanical gait characteristics of naturally occurring unsuccessful foot clearance during swing in individuals with chronic stroke.
    Burpee JL; Lewek MD
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1102-7. PubMed ID: 26371855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered post-stroke propulsion is related to paretic swing phase kinematics.
    Dean JC; Bowden MG; Kelly AL; Kautz SA
    Clin Biomech (Bristol, Avon); 2020 Feb; 72():24-30. PubMed ID: 31809919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stance and Swing Detection Based on the Angular Velocity of Lower Limb Segments During Walking.
    Grimmer M; Schmidt K; Duarte JE; Neuner L; Koginov G; Riener R
    Front Neurorobot; 2019; 13():57. PubMed ID: 31396072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The kinematics of paretic lower limb in aquatic gait with equipment in people with post-stroke hemiparesis.
    Pereira JA; de Souza KK; Pereira SM; Ruschel C; Hubert M; Michaelsen SM
    Clin Biomech (Bristol, Avon); 2019 Dec; 70():16-22. PubMed ID: 31382199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds.
    Chen G; Patten C; Kothari DH; Zajac FE
    Gait Posture; 2005 Aug; 22(1):51-6. PubMed ID: 15996592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted Pelvic Constraint Force Induces Enhanced Use of the Paretic Leg During Walking in Persons Post-Stroke.
    Park SH; Lin JT; Dee W; Hsu CJ; Roth EJ; Rymer WZ; Wu M
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2184-2193. PubMed ID: 32816677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.