These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 34503558)
1. Single-nuclei chromatin profiling of ventral midbrain reveals cell identity transcription factors and cell-type-specific gene regulatory variation. Gui Y; Grzyb K; Thomas MH; Ohnmacht J; Garcia P; Buttini M; Skupin A; Sauter T; Sinkkonen L Epigenetics Chromatin; 2021 Sep; 14(1):43. PubMed ID: 34503558 [TBL] [Abstract][Full Text] [Related]
2. Gui Y; Thomas MH; Garcia P; Karout M; Halder R; Michelucci A; Kollmus H; Zhou C; Melmed S; Schughart K; Balling R; Mittelbronn M; Nadeau JH; Williams RW; Sauter T; Buttini M; Sinkkonen L Front Genet; 2020; 11():566734. PubMed ID: 33173537 [TBL] [Abstract][Full Text] [Related]
3. Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling. Shashikant T; Khor JM; Ettensohn CA BMC Genomics; 2018 Mar; 19(1):206. PubMed ID: 29558892 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomic and Chromatin Landscape Analysis Reveals That Involvement of Pituitary Level Transcription Factors Modulate Incubation Behaviors of Magang Geese. Chang J; Fan D; Liu J; Xu Y; Huang X; Tian Y; Xu J; Huang Y; Ruan J; Shen X Genes (Basel); 2023 Mar; 14(4):. PubMed ID: 37107573 [TBL] [Abstract][Full Text] [Related]
5. Genetic and epigenetic features of promoters with ubiquitous chromatin accessibility support ubiquitous transcription of cell-essential genes. Fan K; Moore JE; Zhang XO; Weng Z Nucleic Acids Res; 2021 Jun; 49(10):5705-5725. PubMed ID: 33978759 [TBL] [Abstract][Full Text] [Related]
6. Differential analysis of chromatin accessibility and gene expression profiles identifies cis-regulatory elements in rat adipose and muscle. Nair VD; Vasoya M; Nair V; Smith GR; Pincas H; Ge Y; Douglas CM; Esser KA; Sealfon SC Genomics; 2021 Nov; 113(6):3827-3841. PubMed ID: 34547403 [TBL] [Abstract][Full Text] [Related]
8. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation. Henikoff S; Henikoff JG; Kaya-Okur HS; Ahmad K Elife; 2020 Nov; 9():. PubMed ID: 33191916 [TBL] [Abstract][Full Text] [Related]
9. Long non-coding RNA repertoire and open chromatin regions constitute midbrain dopaminergic neuron - specific molecular signatures. Gendron J; Colace-Sauty C; Beaume N; Cartonnet H; Guegan J; Ulveling D; Pardanaud-Glavieux C; Moszer I; Cheval H; Ravassard P Sci Rep; 2019 Feb; 9(1):1409. PubMed ID: 30723217 [TBL] [Abstract][Full Text] [Related]
10. Profiling of chromatin accessibility identifies transcription factor binding sites across the genome of Aspergillus species. Huang L; Li X; Dong L; Wang B; Pan L BMC Biol; 2021 Sep; 19(1):189. PubMed ID: 34488759 [TBL] [Abstract][Full Text] [Related]
11. Regulatory chromatin landscape in Tannenbaum M; Sarusi-Portuguez A; Krispil R; Schwartz M; Loza O; Benichou JIC; Mosquna A; Hakim O Plant Methods; 2018; 14():113. PubMed ID: 30598689 [TBL] [Abstract][Full Text] [Related]
12. Single-cell chromatin accessibility and transcriptome atlas of mouse embryos. Jiang S; Huang Z; Li Y; Yu C; Yu H; Ke Y; Jiang L; Liu J Cell Rep; 2023 Mar; 42(3):112210. PubMed ID: 36881507 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide characterisation of Foxa1 binding sites reveals several mechanisms for regulating neuronal differentiation in midbrain dopamine cells. Metzakopian E; Bouhali K; Alvarez-Saavedra M; Whitsett JA; Picketts DJ; Ang SL Development; 2015 Apr; 142(7):1315-24. PubMed ID: 25804738 [TBL] [Abstract][Full Text] [Related]
15. Range of chromatin accessibility configurations are permissive of GABAergic fate acquisition in developing mouse brain. Kilpinen S; Heliölä H; Achim K BMC Genomics; 2023 Nov; 24(1):725. PubMed ID: 38036964 [TBL] [Abstract][Full Text] [Related]
16. Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci. Fullard JF; Giambartolomei C; Hauberg ME; Xu K; Voloudakis G; Shao Z; Bare C; Dudley JT; Mattheisen M; Robakis NK; Haroutunian V; Roussos P Hum Mol Genet; 2017 May; 26(10):1942-1951. PubMed ID: 28335009 [TBL] [Abstract][Full Text] [Related]
17. Genetic variation is a key determinant of chromatin accessibility and drives differences in the regulatory landscape of C57BL/6J and 129S1/SvImJ mice. Mononen J; Taipale M; Malinen M; Velidendla B; Niskanen E; Levonen AL; Ruotsalainen AK; Heikkinen S Nucleic Acids Res; 2024 Apr; 52(6):2904-2923. PubMed ID: 38153160 [TBL] [Abstract][Full Text] [Related]
18. Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain. Puelles E; Annino A; Tuorto F; Usiello A; Acampora D; Czerny T; Brodski C; Ang SL; Wurst W; Simeone A Development; 2004 May; 131(9):2037-48. PubMed ID: 15105370 [TBL] [Abstract][Full Text] [Related]
19. An epigenome atlas of neural progenitors within the embryonic mouse forebrain. Rhodes CT; Thompson JJ; Mitra A; Asokumar D; Lee DR; Lee DJ; Zhang Y; Jason E; Dale RK; Rocha PP; Petros TJ Nat Commun; 2022 Jul; 13(1):4196. PubMed ID: 35858915 [TBL] [Abstract][Full Text] [Related]
20. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. Simon HH; Saueressig H; Wurst W; Goulding MD; O'Leary DD J Neurosci; 2001 May; 21(9):3126-34. PubMed ID: 11312297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]