These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 34503953)
1. Complex Cytochrome P450 Kinetics Due to Multisubstrate Binding and Sequential Metabolism. Part 2. Modeling of Experimental Data. Paragas EM; Wang Z; Korzekwa K; Nagar S Drug Metab Dispos; 2021 Dec; 49(12):1100-1108. PubMed ID: 34503953 [TBL] [Abstract][Full Text] [Related]
2. Complex Cytochrome P450 Kinetics Due to Multisubstrate Binding and Sequential Metabolism. Part 1. Theoretical Considerations. Wang Z; Paragas EM; Nagar S; Korzekwa K Drug Metab Dispos; 2021 Dec; 49(12):1090-1099. PubMed ID: 34503952 [TBL] [Abstract][Full Text] [Related]
3. Multisite kinetic models for CYP3A4: simultaneous activation and inhibition of diazepam and testosterone metabolism. Kenworthy KE; Clarke SE; Andrews J; Houston JB Drug Metab Dispos; 2001 Dec; 29(12):1644-51. PubMed ID: 11717184 [TBL] [Abstract][Full Text] [Related]
4. Sigmoidal kinetic model for two co-operative substrate-binding sites in a cytochrome P450 3A4 active site: an example of the metabolism of diazepam and its derivatives. Shou M; Mei Q; Ettore MW; Dai R; Baillie TA; Rushmore TH Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):845-53. PubMed ID: 10359672 [TBL] [Abstract][Full Text] [Related]
5. Multiple substrate binding by cytochrome P450 3A4: estimation of the number of bound substrate molecules. Kapelyukh Y; Paine MJ; Maréchal JD; Sutcliffe MJ; Wolf CR; Roberts GC Drug Metab Dispos; 2008 Oct; 36(10):2136-44. PubMed ID: 18645035 [TBL] [Abstract][Full Text] [Related]
7. Deoxyschizandrin, a naturally occurring lignan, is a specific probe substrate of human cytochrome P450 3A. Wu J; Cao Y; Zhang Y; Liu Y; Hong JY; Zhu L; Ge G; Yang L Drug Metab Dispos; 2014 Jan; 42(1):94-104. PubMed ID: 24131672 [TBL] [Abstract][Full Text] [Related]
8. Lack of effect of tofacitinib (CP-690,550) on the pharmacokinetics of the CYP3A4 substrate midazolam in healthy volunteers: confirmation of in vitro data. Gupta P; Alvey C; Wang R; Dowty ME; Fahmi OA; Walsky RL; Riese RJ; Krishnaswami S Br J Clin Pharmacol; 2012 Jul; 74(1):109-15. PubMed ID: 22233204 [TBL] [Abstract][Full Text] [Related]
9. UPLC-MS/MS analysis of the Michaelis-Menten kinetics of CYP3A-mediated midazolam 1'- and 4-hydroxylation in rat brain microsomes. Venkatapura Chandrashekar D; DuBois B; Mehvar R J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Aug; 1180():122892. PubMed ID: 34388602 [TBL] [Abstract][Full Text] [Related]
10. A numerical method for analysis of in vitro time-dependent inhibition data. Part 2. Application to experimental data. Korzekwa K; Tweedie D; Argikar UA; Whitcher-Johnstone A; Bell L; Bickford S; Nagar S Drug Metab Dispos; 2014 Sep; 42(9):1587-95. PubMed ID: 24939653 [TBL] [Abstract][Full Text] [Related]
11. Cooperative binding of midazolam with testosterone and alpha-naphthoflavone within the CYP3A4 active site: a NMR T1 paramagnetic relaxation study. Cameron MD; Wen B; Allen KE; Roberts AG; Schuman JT; Campbell AP; Kunze KL; Nelson SD Biochemistry; 2005 Nov; 44(43):14143-51. PubMed ID: 16245930 [TBL] [Abstract][Full Text] [Related]
12. Lack of correlation between in vitro inhibition of CYP3A-mediated metabolism by a PPAR-gamma agonist and its effect on the clinical pharmacokinetics of midazolam, an in vivo probe of CYP3A activity. Fayer JL; Zannikos PN; Stevens JC; Luo Y; Sidhu R; Kirkesseli S J Clin Pharmacol; 2001 Mar; 41(3):305-16. PubMed ID: 11269571 [TBL] [Abstract][Full Text] [Related]
13. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Williams JA; Ring BJ; Cantrell VE; Jones DR; Eckstein J; Ruterbories K; Hamman MA; Hall SD; Wrighton SA Drug Metab Dispos; 2002 Aug; 30(8):883-91. PubMed ID: 12124305 [TBL] [Abstract][Full Text] [Related]
14. Metabolism of levo-alpha-Acetylmethadol (LAAM) by human liver cytochrome P450: involvement of CYP3A4 characterized by atypical kinetics with two binding sites. Oda Y; Kharasch ED J Pharmacol Exp Ther; 2001 Apr; 297(1):410-22. PubMed ID: 11259570 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for regiospecific midazolam oxidation by human cytochrome P450 3A4. Sevrioukova IF; Poulos TL Proc Natl Acad Sci U S A; 2017 Jan; 114(3):486-491. PubMed ID: 28031486 [TBL] [Abstract][Full Text] [Related]
16. A Novel Study Design Using Continuous Intravenous and Intraduodenal Infusions of Midazolam and Voriconazole for Mechanistic Quantitative Assessment of Hepatic and Intestinal CYP3A Inhibition. Li X; Junge L; Taubert M; von Georg A; Dahlinger D; Starke C; Frechen S; Stelzer C; Kinzig M; Sörgel F; Jaehde U; Töx U; Goeser T; Fuhr U J Clin Pharmacol; 2020 Sep; 60(9):1237-1253. PubMed ID: 32427354 [TBL] [Abstract][Full Text] [Related]
17. Differential enantioselectivity and product-dependent activation and inhibition in metabolism of verapamil by human CYP3As. Shen L; Fitzloff JF; Cook CS Drug Metab Dispos; 2004 Feb; 32(2):186-96. PubMed ID: 14744940 [TBL] [Abstract][Full Text] [Related]
18. In vitro metabolism of the opioid tilidine and interaction of tilidine and nortilidine with CYP3A4, CYP2C19, and CYP2D6. Weiss J; Sawa E; Riedel KD; Haefeli WE; Mikus G Naunyn Schmiedebergs Arch Pharmacol; 2008 Sep; 378(3):275-82. PubMed ID: 18516595 [TBL] [Abstract][Full Text] [Related]
19. The Impact of the Hepatocyte-to-Plasma pH Gradient on the Prediction of Hepatic Clearance and Drug-Drug Interactions for CYP2C9 and CYP3A4 Substrates. Rougée LRA; Mohutsky MA; Bedwell DW; Ruterbories KJ; Hall SD Drug Metab Dispos; 2017 Sep; 45(9):1008-1018. PubMed ID: 28679672 [TBL] [Abstract][Full Text] [Related]
20. Different enzyme kinetics of midazolam in recombinant CYP3A4 microsomes from human and insect sources. Christensen H; Mathiesen L; Postvoll LW; Winther B; Molden E Drug Metab Pharmacokinet; 2009; 24(3):261-8. PubMed ID: 19571438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]