BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 34503999)

  • 1. Comparative genomics provides insights into the aquatic adaptations of mammals.
    Yuan Y; Zhang Y; Zhang P; Liu C; Wang J; Gao H; Hoelzel AR; Seim I; Lv M; Lin M; Dong L; Gao H; Yang Z; Caruso F; Lin W; da Fonseca RR; Wang D; Wang X; Rasmussen MH; Liu M; Zheng J; Zhao L; Campos PF; Kang H; Iversen M; Song Y; Guo X; Guo J; Qin Y; Pan S; Xu Q; Meng L; A Y; Liu S; Lee SM; Liu X; Xu X; Yang H; Fan G; Wang K; Li S
    Proc Natl Acad Sci U S A; 2021 Sep; 118(37):. PubMed ID: 34503999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary Genetics of Hypoxia and Cold Tolerance in Mammals.
    Zhu K; Ge D; Wen Z; Xia L; Yang Q
    J Mol Evol; 2018 Dec; 86(9):618-634. PubMed ID: 30327830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neofunctionalization of the UCP1 mediated the non-shivering thermogenesis in the evolution of small-sized placental mammals.
    Mendes T; Silva L; Almeida D; Antunes A
    Genomics; 2020 May; 112(3):2489-2498. PubMed ID: 32027956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breathing Air and Living Underwater: Molecular Evolution of Genes Related to Antioxidant Response in Cetaceans and Pinnipeds.
    Selleghin-Veiga G; Magpali L; Picorelli A; Silva FA; Ramos E; Nery MF
    J Mol Evol; 2024 Jun; 92(3):300-316. PubMed ID: 38735005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Attenuation of UCP1 as the Potential Mechanism for a Thickened Blubber Layer in Cetaceans.
    Zhou M; Wu T; Chen Y; Xu S; Yang G
    Mol Biol Evol; 2022 Nov; 39(11):. PubMed ID: 36288798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive evolution of the uncoupling protein 1 gene contributed to the acquisition of novel nonshivering thermogenesis in ancestral eutherian mammals.
    Saito S; Saito CT; Shingai R
    Gene; 2008 Jan; 408(1-2):37-44. PubMed ID: 18023297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hundreds of Genes Experienced Convergent Shifts in Selective Pressure in Marine Mammals.
    Chikina M; Robinson JD; Clark NL
    Mol Biol Evol; 2016 Sep; 33(9):2182-92. PubMed ID: 27329977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into brown adipose tissue evolution and function from non-model organisms.
    Jastroch M; Oelkrug R; Keipert S
    J Exp Biol; 2018 Mar; 221(Pt Suppl 1):. PubMed ID: 29514888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergent evolution of the genomes of marine mammals.
    Foote AD; Liu Y; Thomas GW; Vinař T; Alföldi J; Deng J; Dugan S; van Elk CE; Hunter ME; Joshi V; Khan Z; Kovar C; Lee SL; Lindblad-Toh K; Mancia A; Nielsen R; Qin X; Qu J; Raney BJ; Vijay N; Wolf JB; Hahn MW; Muzny DM; Worley KC; Gilbert MT; Gibbs RA
    Nat Genet; 2015 Mar; 47(3):272-5. PubMed ID: 25621460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The first chromosome-level genome for a marine mammal as a resource to study ecology and evolution.
    Fan G; Zhang Y; Liu X; Wang J; Sun Z; Sun S; Zhang H; Chen J; Lv M; Han K; Tan X; Hu J; Guan R; Fu Y; Liu S; Chen X; Xu Q; Qin Y; Liu L; Bai J; Wang O; Tang J; Lu H; Shang Z; Wang B; Hu G; Zhao X; Zou Y; Chen A; Gong M; Zhang W; Lee SM; Li S; Liu J; Li Z; Lu Y; Sabir JSM; Sabir MJ; Khan M; Hajrah NH; Yin Y; Kristiansen K; Yang H; Wang J; Xu X; Liu X
    Mol Ecol Resour; 2019 Jul; 19(4):944-956. PubMed ID: 30735609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic organization and adaptive evolution of IGHC genes in marine mammals.
    Li L; Rong X; Li G; Wang Y; Chen B; Ren W; Yang G; Xu S
    Mol Immunol; 2018 Jul; 99():75-81. PubMed ID: 29723770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Marine Mammal Class II Major Histocompatibility Complex Organization.
    de Sá ALA; Breaux B; Burlamaqui TCT; Deiss TC; Sena L; Criscitiello MF; Schneider MPC
    Front Immunol; 2019; 10():696. PubMed ID: 31019512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Here and there, but not everywhere: repeated loss of uncoupling protein 1 in amniotes.
    McGaugh S; Schwartz TS
    Biol Lett; 2017 Jan; 13(1):. PubMed ID: 28052937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative functional analyses of UCP1 to unravel evolution, ecophysiology and mechanisms of mammalian thermogenesis.
    Gaudry MJ; Jastroch M
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 255():110613. PubMed ID: 33971349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myoglobin primary structure reveals multiple convergent transitions to semi-aquatic life in the world's smallest mammalian divers.
    He K; Eastman TG; Czolacz H; Li S; Shinohara A; Kawada SI; Springer MS; Berenbrink M; Campbell KL
    Elife; 2021 Apr; 10():. PubMed ID: 33949308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of UCP1.
    Gaudry MJ; Campbell KL; Jastroch M
    Handb Exp Pharmacol; 2019; 251():127-141. PubMed ID: 29748882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular evolution of UCP1 and the evolutionary history of mammalian non-shivering thermogenesis.
    Hughes DA; Jastroch M; Stoneking M; Klingenspor M
    BMC Evol Biol; 2009 Jan; 9():4. PubMed ID: 19128480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans.
    Shen T; Xu S; Wang X; Yu W; Zhou K; Yang G
    BMC Evol Biol; 2012 Mar; 12():39. PubMed ID: 22443485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide signatures of mammalian skin covering evolution.
    Cao P; Dai Q; Deng C; Zhao X; Qin S; Yang J; Ju R; Wang Z; Lu G; Gu X; Yang Z; Zhu L
    Sci China Life Sci; 2021 Oct; 64(10):1765-1780. PubMed ID: 33481165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diving deep: understanding the genetic components of hypoxia tolerance in marine mammals.
    Hindle AG
    J Appl Physiol (1985); 2020 May; 128(5):1439-1446. PubMed ID: 32324472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.