BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 34504067)

  • 1. Conformational rearrangements enable iterative backbone N-methylation in RiPP biosynthesis.
    Miller FS; Crone KK; Jensen MR; Shaw S; Harcombe WR; Elias MH; Freeman MF
    Nat Commun; 2021 Sep; 12(1):5355. PubMed ID: 34504067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse Protein Architectures and α-
    Imani AS; Lee AR; Vishwanathan N; de Waal F; Freeman MF
    ACS Chem Biol; 2022 Apr; 17(4):908-917. PubMed ID: 35297605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct Autocatalytic α- N-Methylating Precursors Expand the Borosin RiPP Family of Peptide Natural Products.
    Quijano MR; Zach C; Miller FS; Lee AR; Imani AS; Künzler M; Freeman MF
    J Am Chem Soc; 2019 Jun; 141(24):9637-9644. PubMed ID: 31117659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinformatic Expansion of Borosins Uncovers Trans-Acting Peptide Backbone
    Cho H; Lee H; Hong K; Chung H; Song I; Lee JS; Kim S
    Biochemistry; 2022 Feb; 61(3):183-194. PubMed ID: 35061348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RiPP enzyme heterocomplex structure-guided discovery of a bacterial borosin α-
    Crone KK; Jomori T; Miller FS; Gralnick JA; Elias MH; Freeman MF
    RSC Chem Biol; 2023 Oct; 4(10):804-816. PubMed ID: 37799586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autocatalytic backbone N-methylation in a family of ribosomal peptide natural products.
    van der Velden NS; Kälin N; Helf MJ; Piel J; Freeman MF; Künzler M
    Nat Chem Biol; 2017 Aug; 13(8):833-835. PubMed ID: 28581484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Self-Sacrificing N-Methyltransferase Is the Precursor of the Fungal Natural Product Omphalotin.
    Ramm S; Krawczyk B; Mühlenweg A; Poch A; Mösker E; Süssmuth RD
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9994-9997. PubMed ID: 28715095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Basis for Autocatalytic Backbone N-Methylation in RiPP Natural Product Biosynthesis.
    Ongpipattanakul C; Nair SK
    ACS Chem Biol; 2018 Oct; 13(10):2989-2999. PubMed ID: 30204409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis.
    Burkhart BJ; Hudson GA; Dunbar KL; Mitchell DA
    Nat Chem Biol; 2015 Aug; 11(8):564-70. PubMed ID: 26167873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of Borosin Catalytic Strategies and Function through Bioinformatic Profiling.
    Lee AR; Carter RS; Imani AS; Dommaraju SR; Hudson GA; Mitchell DA; Freeman MF
    ACS Chem Biol; 2024 May; 19(5):1116-1124. PubMed ID: 38695893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the Structural Space of Ribosomal Peptides: Autocatalytic N-Methylation in Omphalotin Biosynthesis.
    Aldemir H; Gulder TAM
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13570-13572. PubMed ID: 28949431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a Dehydratase and Methyltransferase in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides in Lachnospiraceae.
    Huo L; Zhao X; Acedo JZ; Estrada P; Nair SK; van der Donk WA
    Chembiochem; 2020 Jan; 21(1-2):190-199. PubMed ID: 31532570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme-mediated backbone N-methylation in ribosomally encoded peptides.
    Matabaro E; Song H; Chepkirui C; Kaspar H; Witte L; Naismith JH; Freeman MF; Künzler M
    Methods Enzymol; 2021; 656():429-458. PubMed ID: 34325794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs).
    Cao L; Do T; Link AJ
    J Ind Microbiol Biotechnol; 2021 Jun; 48(3-4):. PubMed ID: 33928382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribosomal Natural Products, Tailored To Fit.
    Funk MA; van der Donk WA
    Acc Chem Res; 2017 Jul; 50(7):1577-1586. PubMed ID: 28682627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis.
    Yang X; van der Donk WA
    Chemistry; 2013 Jun; 19(24):7662-77. PubMed ID: 23666908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery and characterization of a novel C-terminal peptide carboxyl methyltransferase in a lassomycin-like lasso peptide biosynthetic pathway.
    Su Y; Han M; Meng X; Feng Y; Luo S; Yu C; Zheng G; Zhu S
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2649-2664. PubMed ID: 30707253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining.
    Skinnider MA; Johnston CW; Edgar RE; Dejong CA; Merwin NJ; Rees PN; Magarvey NA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6343-E6351. PubMed ID: 27698135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aliphatic Ether Bond Formation Expands the Scope of Radical SAM Enzymes in Natural Product Biosynthesis.
    Clark KA; Bushin LB; Seyedsayamdost MR
    J Am Chem Soc; 2019 Jul; 141(27):10610-10615. PubMed ID: 31246011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.