These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34504081)

  • 1. Reconfigurable multi-component micromachines driven by optoelectronic tweezers.
    Zhang S; Elsayed M; Peng R; Chen Y; Zhang Y; Peng J; Li W; Chamberlain MD; Nikitina A; Yu S; Liu X; Neale SL; Wheeler AR
    Nat Commun; 2021 Sep; 12(1):5349. PubMed ID: 34504081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biobased High-Performance Rotary Micromotors for Individually Reconfigurable Micromachine Arrays and Microfluidic Applications.
    Kim K; Liang Z; Liu M; Fan DE
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6144-6152. PubMed ID: 28032745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The optoelectronic microrobot: A versatile toolbox for micromanipulation.
    Zhang S; Scott EY; Singh J; Chen Y; Zhang Y; Elsayed M; Chamberlain MD; Shakiba N; Adams K; Yu S; Morshead CM; Zandstra PW; Wheeler AR
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):14823-14828. PubMed ID: 31289234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-Like Micromotors.
    Esteban-Fernández de Ávila B; Gao W; Karshalev E; Zhang L; Wang J
    Acc Chem Res; 2018 Sep; 51(9):1901-1910. PubMed ID: 30074758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible-Light-Driven Single-Component BiVO
    Villa K; Novotný F; Zelenka J; Browne MP; Ruml T; Pumera M
    ACS Nano; 2019 Jul; 13(7):8135-8145. PubMed ID: 31283169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape-encoded dynamic assembly of mobile micromachines.
    Alapan Y; Yigit B; Beker O; Demirörs AF; Sitti M
    Nat Mater; 2019 Nov; 18(11):1244-1251. PubMed ID: 31235903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steering Micromotors via Reprogrammable Optoelectronic Paths.
    Chen X; Chen X; Elsayed M; Edwards H; Liu J; Peng Y; Zhang HP; Zhang S; Wang W; Wheeler AR
    ACS Nano; 2023 Mar; 17(6):5894-5904. PubMed ID: 36912818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniaturized optoelectronic tweezers controlled by GaN micro-pixel light emitting diode arrays.
    Zarowna-Dabrowska A; Neale SL; Massoubre D; McKendry J; Rae BR; Henderson RK; Rose MJ; Yin H; Cooper JM; Gu E; Dawson MD
    Opt Express; 2011 Jan; 19(3):2720-8. PubMed ID: 21369093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional 2D Germanene Fluorescent Coating of Microrobots for Micromachines Multiplexing.
    Maric T; Beladi-Mousavi SM; Khezri B; Sturala J; Nasir MZM; Webster RD; Sofer Z; Pumera M
    Small; 2020 Jul; 16(27):e1902365. PubMed ID: 31433114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-Based Helical Micromotors Constructed by "Microscale Liquid Rope-Coil Effect" with Microfluidics.
    Dong Y; Wang L; Wang J; Wang S; Wang Y; Jin D; Chen P; Du W; Zhang L; Liu BF
    ACS Nano; 2020 Dec; 14(12):16600-16613. PubMed ID: 33119265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optoelectronic tweezers: a versatile toolbox for nano-/micro-manipulation.
    Zhang S; Xu B; Elsayed M; Nan F; Liang W; Valley JK; Liu L; Huang Q; Wu MC; Wheeler AR
    Chem Soc Rev; 2022 Nov; 51(22):9203-9242. PubMed ID: 36285556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Propelled Metal-Polymer Hybrid Micromachines with Bending and Rotational Motions.
    Yoshizumi Y; Suzuki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21355-21361. PubMed ID: 28581704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Light-Responsive Quantum Dot Sensitized Hybrid Micromotors with Dual-Mode Propulsion.
    María Hormigos R; Jurado Sánchez B; Escarpa A
    Angew Chem Int Ed Engl; 2019 Mar; 58(10):3128-3132. PubMed ID: 30521672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometry Design, Principles and Assembly of Micromotors.
    Ning H; Zhang Y; Zhu H; Ingham A; Huang G; Mei Y; Solovev AA
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite Multifunctional Micromotors from Droplet Microfluidics.
    Zou M; Wang J; Yu Y; Sun L; Wang H; Xu H; Zhao Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34618-34624. PubMed ID: 30212179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between positive and negative dielectric microparticles/microorganism in optoelectronic tweezers.
    Liang S; Gan C; Dai Y; Zhang C; Bai X; Zhang S; Wheeler AR; Chen H; Feng L
    Lab Chip; 2021 Nov; 21(22):4379-4389. PubMed ID: 34596652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-Driven ZnO Brush-Shaped Self-Propelled Micromachines for Nitroaromatic Explosives Decomposition.
    Ying Y; Pourrahimi AM; Manzanares-Palenzuela CL; Novotny F; Sofer Z; Pumera M
    Small; 2020 Jul; 16(27):e1902944. PubMed ID: 31464380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Micromachines for Biological Studies.
    Andrew PK; Williams MAK; Avci E
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32069922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape-Tunable Janus Micromotors via Surfactant-Induced Dewetting.
    Zhu J; Wang H; Zhang Z
    Langmuir; 2021 Apr; 37(16):4964-4970. PubMed ID: 33861610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications.
    Mujtaba J; Liu J; Dey KK; Li T; Chakraborty R; Xu K; Makarov D; Barmin RA; Gorin DA; Tolstoy VP; Huang G; Solovev AA; Mei Y
    Adv Mater; 2021 Jun; 33(22):e2007465. PubMed ID: 33893682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.