These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 34504120)
1. Chemogenetic modulation of histaminergic neurons in the tuberomamillary nucleus alters territorial aggression and wakefulness. Naganuma F; Nakamura T; Kuroyanagi H; Tanaka M; Yoshikawa T; Yanai K; Okamura N Sci Rep; 2021 Sep; 11(1):17935. PubMed ID: 34504120 [TBL] [Abstract][Full Text] [Related]
2. Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability. Fujita A; Bonnavion P; Wilson MH; Mickelsen LE; Bloit J; de Lecea L; Jackson AC J Neurosci; 2017 Sep; 37(39):9574-9592. PubMed ID: 28874450 [TBL] [Abstract][Full Text] [Related]
3. Reassessing the Role of Histaminergic Tuberomammillary Neurons in Arousal Control. Venner A; Mochizuki T; De Luca R; Anaclet C; Scammell TE; Saper CB; Arrigoni E; Fuller PM J Neurosci; 2019 Nov; 39(45):8929-8939. PubMed ID: 31548232 [TBL] [Abstract][Full Text] [Related]
4. Melanocortin regulation of histaminergic neurons via perifornical lateral hypothalamic melanocortin 4 receptors. Michael NJ; Caron A; Lee CE; Castorena CM; Lee S; Zigman JM; Williams KW; Elmquist JK Mol Metab; 2020 May; 35():100956. PubMed ID: 32244183 [TBL] [Abstract][Full Text] [Related]
5. Glutamate Activates the Histaminergic Tuberomammillary Nucleus and Increases Wakefulness in Rats. Yin D; Dong H; Wang TX; Hu ZZ; Cheng NN; Qu WM; Huang ZL Neuroscience; 2019 Aug; 413():86-98. PubMed ID: 31202706 [TBL] [Abstract][Full Text] [Related]
6. Genetic lesioning of histamine neurons increases sleep-wake fragmentation and reveals their contribution to modafinil-induced wakefulness. Yu X; Ma Y; Harding EC; Yustos R; Vyssotski AL; Franks NP; Wisden W Sleep; 2019 May; 42(5):. PubMed ID: 30722053 [TBL] [Abstract][Full Text] [Related]
7. Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. Sasaki K; Suzuki M; Mieda M; Tsujino N; Roth B; Sakurai T PLoS One; 2011; 6(5):e20360. PubMed ID: 21647372 [TBL] [Abstract][Full Text] [Related]
8. Wake-related activity of tuberomammillary neurons in rats. Ko EM; Estabrooke IV; McCarthy M; Scammell TE Brain Res; 2003 Dec; 992(2):220-6. PubMed ID: 14625060 [TBL] [Abstract][Full Text] [Related]
9. Effects of lesions of the histaminergic tuberomammillary nucleus on spontaneous sleep in rats. Gerashchenko D; Chou TC; Blanco-Centurion CA; Saper CB; Shiromani PJ Sleep; 2004 Nov; 27(7):1275-81. PubMed ID: 15586780 [TBL] [Abstract][Full Text] [Related]
10. Inactivation of the Tuberomammillary Nucleus by GABA Xie JF; Fan K; Wang C; Xie P; Hou M; Xin L; Cui GF; Wang LX; Shao YF; Hou YP Neurochem Res; 2017 Aug; 42(8):2314-2325. PubMed ID: 28365867 [TBL] [Abstract][Full Text] [Related]
11. Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. Oishi Y; Huang ZL; Fredholm BB; Urade Y; Hayaishi O Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19992-7. PubMed ID: 19066225 [TBL] [Abstract][Full Text] [Related]
12. Wakefulness Is Governed by GABA and Histamine Cotransmission. Yu X; Ye Z; Houston CM; Zecharia AY; Ma Y; Zhang Z; Uygun DS; Parker S; Vyssotski AL; Yustos R; Franks NP; Brickley SG; Wisden W Neuron; 2015 Jul; 87(1):164-78. PubMed ID: 26094607 [TBL] [Abstract][Full Text] [Related]
13. GABAA receptors involved in sleep and anaesthesia: β1- versus β3-containing assemblies. Yanovsky Y; Schubring S; Fleischer W; Gisselmann G; Zhu XR; Lübbert H; Hatt H; Rudolph U; Haas HL; Sergeeva OA Pflugers Arch; 2012 Jan; 463(1):187-99. PubMed ID: 21735059 [TBL] [Abstract][Full Text] [Related]
14. Optogenetic-mediated release of histamine reveals distal and autoregulatory mechanisms for controlling arousal. Williams RH; Chee MJ; Kroeger D; Ferrari LL; Maratos-Flier E; Scammell TE; Arrigoni E J Neurosci; 2014 Apr; 34(17):6023-9. PubMed ID: 24760861 [TBL] [Abstract][Full Text] [Related]
15. Chemogenetic activation or inhibition of histaminergic neurons bidirectionally modulates recognition memory formation and retrieval in male and female mice. Costa A; Ducourneau E; Curti L; Masi A; Mannaioni G; Hardt L; Biyong EF; Potier M; Blandina P; Trifilieff P; Provensi G; Ferreira G; Passani MB Sci Rep; 2024 May; 14(1):11283. PubMed ID: 38760416 [TBL] [Abstract][Full Text] [Related]
16. Fasting activated histaminergic neurons and enhanced arousal effect of caffeine in mice. Wang YQ; Li R; Wu X; Zhu F; Takata Y; Zhang Z; Zhang MQ; Li SQ; Qu WM Pharmacol Biochem Behav; 2015 Jun; 133():164-73. PubMed ID: 25895691 [TBL] [Abstract][Full Text] [Related]
17. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. Parmentier R; Ohtsu H; Djebbara-Hannas Z; Valatx JL; Watanabe T; Lin JS J Neurosci; 2002 Sep; 22(17):7695-711. PubMed ID: 12196593 [TBL] [Abstract][Full Text] [Related]
18. Prostaglandin E2 activates the histaminergic system via the EP4 receptor to induce wakefulness in rats. Huang ZL; Sato Y; Mochizuki T; Okada T; Qu WM; Yamatodani A; Urade Y; Hayaishi O J Neurosci; 2003 Jul; 23(14):5975-83. PubMed ID: 12853415 [TBL] [Abstract][Full Text] [Related]
19. GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness. Zecharia AY; Yu X; Götz T; Ye Z; Carr DR; Wulff P; Bettler B; Vyssotski AL; Brickley SG; Franks NP; Wisden W J Neurosci; 2012 Sep; 32(38):13062-75. PubMed ID: 22993424 [TBL] [Abstract][Full Text] [Related]
20. [Advances in the study of histaminergic systems and sleep-wake regulation]. Liu TY; Hong ZY; Qu WM; Huang ZL Yao Xue Xue Bao; 2011 Mar; 46(3):247-52. PubMed ID: 21626776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]