These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34504163)

  • 21. Sheathless Focusing and Separation of Microparticles Using Tilted-Angle Traveling Surface Acoustic Waves.
    Ahmed H; Destgeer G; Park J; Afzal M; Sung HJ
    Anal Chem; 2018 Jul; 90(14):8546-8552. PubMed ID: 29911381
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theory of acoustic trapping of microparticles in capillary tubes.
    Bach JS; Bruus H
    Phys Rev E; 2020 Feb; 101(2-1):023107. PubMed ID: 32168631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields.
    Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rigorous analysis of the axial acoustic radiation force on a spherical object for single-beam acoustic tweezing applications.
    P Weekers B; Rottenberg X; Lagae L; Rochus V
    J Acoust Soc Am; 2022 Jun; 151(6):3615. PubMed ID: 35778184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acoustofluidic relay: sequential trapping and transporting of microparticles via acoustically excited oscillating bubbles.
    Xie Y; Ahmed D; Lapsley MI; Lu M; Li S; Huang TJ
    J Lab Autom; 2014 Apr; 19(2):137-43. PubMed ID: 23592570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Particle Manipulation with External Field; From Recent Advancement to Perspectives.
    Miyagawa A; Okada T
    Anal Sci; 2021 Jan; 37(1):69-78. PubMed ID: 32921654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical study of acoustophoretic manipulation of particles in microfluidic channels.
    Ma J; Liang D; Yang X; Wang H; Wu F; Sun C; Xiao Y
    Proc Inst Mech Eng H; 2021 Oct; 235(10):1163-1174. PubMed ID: 34116594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens.
    Cicek A; Korozlu N; Adem Kaya O; Ulug B
    Sci Rep; 2017 Mar; 7():43374. PubMed ID: 28252033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrasound Manipulation and Extrusion of Active Nanorods.
    Rubio LD; Collins M; Sen A; Aranson IS
    Small; 2023 Sep; 19(38):e2300028. PubMed ID: 37246278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acoustic Trapping and Manipulation of Hollow Microparticles under Fluid Flow Using a Single-Lens Focused Ultrasound Transducer.
    Wrede P; Aghakhani A; Bozuyuk U; Yildiz E; Sitti M
    ACS Appl Mater Interfaces; 2023 Nov; 15(45):52224-36. PubMed ID: 37917969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration.
    Destgeer G; Cho H; Ha BH; Jung JH; Park J; Sung HJ
    Lab Chip; 2016 Feb; 16(4):660-7. PubMed ID: 26755271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Force and Velocity Analysis of Particles Manipulated by Toroidal Vortex on Optoelectrokinetic Microfluidic Platform.
    Zhang SJ; Yang ZR; Kuo JN
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Double-Mode Microparticle Manipulation by Tunable Secondary Flow in Microchannel With Arc-Shaped Groove Arrays.
    Zhao Q; Yan S; Yuan D; Zhang J; Du H; Alici G; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1406-1412. PubMed ID: 28809710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Particle-size-dependent acoustophoretic motion and depletion of micro- and nano-particles at long timescales.
    Qiu W; Bruus H; Augustsson P
    Phys Rev E; 2020 Jul; 102(1-1):013108. PubMed ID: 32794927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic Virtual Vortices with Tunable Orbital Angular Momentum for Trapping of Mie Particles.
    Marzo A; Caleap M; Drinkwater BW
    Phys Rev Lett; 2018 Jan; 120(4):044301. PubMed ID: 29437423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Eccentric electrophoretic motion of a rectangular particle in a rectangular microchannel.
    Li D; Daghighi Y
    J Colloid Interface Sci; 2010 Feb; 342(2):638-42. PubMed ID: 19944427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Quantitative Study of the Secondary Acoustic Radiation Force on Biological Cells during Acoustophoresis.
    Saeidi D; Saghafian M; Haghjooy Javanmard S; Wiklund M
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 32019234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Forces acting on a small particle in an acoustical field in a thermoviscous fluid.
    Karlsen JT; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043010. PubMed ID: 26565335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.
    Mitri FG
    Ultrasonics; 2017 Feb; 74():62-71. PubMed ID: 27723472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.