These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34504174)

  • 1. Rapid fluorescence imaging of human hepatocellular carcinoma using the β-galactosidase-activatable fluorescence probe SPiDER-βGal.
    Ogawa S; Kubo H; Murayama Y; Kubota T; Yubakami M; Matsumoto T; Yamamoto Y; Morimura R; Ikoma H; Okamoto K; Kamiya M; Urano Y; Otsuji E
    Sci Rep; 2021 Sep; 11(1):17946. PubMed ID: 34504174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A topically-sprayable, activatable fluorescent and retaining probe, SPiDER-βGal for detecting cancer: Advantages of anchoring to cellular proteins after activation.
    Nakamura Y; Mochida A; Nagaya T; Okuyama S; Ogata F; Choyke PL; Kobayashi H
    Oncotarget; 2017 Jun; 8(24):39512-39521. PubMed ID: 28467810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo imaging of β-galactosidase stimulated activity in hepatocellular carcinoma using ligand-targeted fluorescent probe.
    Kim EJ; Kumar R; Sharma A; Yoon B; Kim HM; Lee H; Hong KS; Kim JS
    Biomaterials; 2017 Apr; 122():83-90. PubMed ID: 28110172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Novel Histone Deacetylase-Targeted Near-Infrared Probe for Hepatocellular Carcinoma Imaging and Fluorescence Image-Guided Surgery.
    Tang C; Du Y; Liang Q; Cheng Z; Tian J
    Mol Imaging Biol; 2020 Jun; 22(3):476-485. PubMed ID: 31228075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging of ovarian cancers using enzyme activatable probes with second near-infrared window emission.
    Chen JA; Pan H; Wang Z; Gao J; Tan J; Ouyang Z; Guo W; Gu X
    Chem Commun (Camb); 2020 Mar; 56(18):2731-2734. PubMed ID: 32022000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An activatable fluorescence probe for rapid detection and in situ imaging of β-galactosidase activity in cabbage roots under heavy metal stress.
    Zhao K; Tan H; Fang C; Zhou Z; Wu C; Zhu X; Liu F; Zhang Y; Li H
    Food Chem; 2024 Sep; 452():139557. PubMed ID: 38728895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-Galactosidase is a target enzyme for detecting peritoneal metastasis of gastric cancer.
    Kubo H; Murayama Y; Ogawa S; Matsumoto T; Yubakami M; Ohashi T; Kubota T; Okamoto K; Kamiya M; Urano Y; Otsuji E
    Sci Rep; 2021 May; 11(1):10664. PubMed ID: 34021168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. β-Galactosidase-activated theranostic for hepatic carcinoma therapy and imaging.
    Maiti M; Kikuchi K; Athul KK; Kaur A; Bhuniya S
    Chem Commun (Camb); 2022 May; 58(44):6413-6416. PubMed ID: 35543438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new near-infrared excitation/emission fluorescent probe for the detection of β-galactosidase in living cells and in vivo.
    Li Y; Liu F; Zhu D; Zhu T; Zhang Y; Li Y; Luo J; Kong L
    Talanta; 2022 Jan; 237():122952. PubMed ID: 34736678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preoperative Examination and Intraoperative Identification of Hepatocellular Carcinoma Using a Targeted Bimodal Imaging Probe.
    Jin Y; Wang K; Tian J
    Bioconjug Chem; 2018 Apr; 29(4):1475-1484. PubMed ID: 29544252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel NIR fluorescent probe for enhanced β-galactosidase detection and tumor imaging in ovarian cancer models.
    Luo W; Diao Q; Lv L; Li T; Ma P; Song D
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124411. PubMed ID: 38728851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sensitive fluorescent probe for β-galactosidase activity detection and application in ovarian tumor imaging.
    Fan F; Zhang L; Zhou X; Mu F; Shi G
    J Mater Chem B; 2021 Jan; 9(1):170-175. PubMed ID: 33230516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Au@SiO
    Dai YW; Zhu LX; Zhang Y; Wang SH; Chen K; Jiang TT; Xu XL; Geng XP
    Hepatobiliary Pancreat Dis Int; 2019 Jun; 18(3):266-272. PubMed ID: 30879890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD146-targeted immunoPET and NIRF Imaging of Hepatocellular Carcinoma with a Dual-Labeled Monoclonal Antibody.
    Hernandez R; Sun H; England CG; Valdovinos HF; Ehlerding EB; Barnhart TE; Yang Y; Cai W
    Theranostics; 2016; 6(11):1918-33. PubMed ID: 27570560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An enzymatically activated fluorescence probe for targeted tumor imaging.
    Kamiya M; Kobayashi H; Hama Y; Koyama Y; Bernardo M; Nagano T; Choyke PL; Urano Y
    J Am Chem Soc; 2007 Apr; 129(13):3918-29. PubMed ID: 17352471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Application of Heptamethine Cyanine Dye DZ-1 and Indocyanine Green for Imaging and Targeting in Xenograft Models of Hepatocellular Carcinoma.
    Zhang C; Zhao Y; Zhang H; Chen X; Zhao N; Tan D; Zhang H; Shi C
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28635650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo ratiometric tracking of endogenous β-galactosidase activity using an activatable near-infrared fluorescent probe.
    Shi L; Yan C; Ma Y; Wang T; Guo Z; Zhu WH
    Chem Commun (Camb); 2019 Oct; 55(82):12308-12311. PubMed ID: 31556426
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Chen JA; Guo W; Wang Z; Sun N; Pan H; Tan J; Ouyang Z; Fu W; Wang Y; Hu W; Gu X
    Anal Chem; 2020 Sep; 92(18):12613-12621. PubMed ID: 32786453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of
    Zheng J; Miao W; Huang C; Lin H
    Ann Nucl Med; 2017 Jul; 31(6):486-494. PubMed ID: 28474165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of endogenous β-galactosidase activity in living cells and zebrafish with a turn-on near-infrared fluorescent probe.
    Pang X; Li Y; Zhou Z; Lu Q; Xie R; Wu C; Zhang Y; Li H
    Talanta; 2020 Sep; 217():121098. PubMed ID: 32498839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.