These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34504180)

  • 1. Space-fractional quantum heat engine based on level degeneracy.
    Aydiner E
    Sci Rep; 2021 Sep; 11(1):17901. PubMed ID: 34504180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Szilard engine for the fractional power-law potentials.
    Aydiner E
    Sci Rep; 2021 Jan; 11(1):1576. PubMed ID: 33452358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-dependent maximization of work and efficiency in a degeneracy-assisted quantum Stirling heat engine.
    Chatterjee S; Koner A; Chatterjee S; Kumar C
    Phys Rev E; 2021 Jun; 103(6-1):062109. PubMed ID: 34271723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bound on Efficiency of Heat Engine from Uncertainty Relation Viewpoint.
    Chattopadhyay P; Mitra A; Paul G; Zarikas V
    Entropy (Basel); 2021 Apr; 23(4):. PubMed ID: 33918678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic quantum heat engine from uncertainty relation standpoint.
    Chattopadhyay P; Paul G
    Sci Rep; 2019 Nov; 9(1):16967. PubMed ID: 31740692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-level laser heat engine at optimal performance with ecological function.
    Singh V; Johal RS
    Phys Rev E; 2019 Jul; 100(1-1):012138. PubMed ID: 31499856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of quantum heat engines under the influence of long-range interactions.
    Wang Q
    Phys Rev E; 2020 Jul; 102(1-1):012138. PubMed ID: 32794960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum heat engine based on level degeneracy.
    Thomas G; Das D; Ghosh S
    Phys Rev E; 2019 Jul; 100(1-1):012123. PubMed ID: 31499891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algorithmic quantum heat engines.
    Köse E; Çakmak S; Gençten A; Kominis IK; Müstecaplıoğlu ÖE
    Phys Rev E; 2019 Jul; 100(1-1):012109. PubMed ID: 31499932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum mechanical bound for efficiency of quantum Otto heat engine.
    Park JM; Lee S; Chun HM; Noh JD
    Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Work and power fluctuations in a critical heat engine.
    Holubec V; Ryabov A
    Phys Rev E; 2017 Sep; 96(3-1):030102. PubMed ID: 29347002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Quantum Heat Engine by Encircling a Liouvillian Exceptional Point.
    Bu JT; Zhang JQ; Ding GY; Li JC; Zhang JW; Wang B; Ding WQ; Yuan WF; Chen L; Özdemir ŞK; Zhou F; Jing H; Feng M
    Phys Rev Lett; 2023 Mar; 130(11):110402. PubMed ID: 37001093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Markovian thermal operations boosting the performance of quantum heat engines.
    Ptaszyński K
    Phys Rev E; 2022 Jul; 106(1-1):014114. PubMed ID: 35974499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Finite-Size Heat Source's Heat Capacity on the Efficiency of Heat Engine.
    Ma YH
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-space interference in extensive and nonextensive quantum heat engines.
    Hardal AÜC; Paternostro M; Müstecaplıoğlu ÖE
    Phys Rev E; 2018 Apr; 97(4-1):042127. PubMed ID: 29758690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasilinear irreversible thermodynamics of a low-temperature-differential kinematic Stirling heat engine.
    Izumida Y
    Phys Rev E; 2020 Jul; 102(1-1):012142. PubMed ID: 32795077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants.
    El Makouri A; Slaoui A; Ahl Laamara R
    Phys Rev E; 2023 Oct; 108(4-1):044114. PubMed ID: 37978648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thermoacoustic-Stirling heat engine: detailed study.
    Backhaus S; Swift GW
    J Acoust Soc Am; 2000 Jun; 107(6):3148-66. PubMed ID: 10875360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction.
    Lee S; Ha M; Park JM; Jeong H
    Phys Rev E; 2020 Feb; 101(2-1):022127. PubMed ID: 32168587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impurity reveals distinct operational phases in quantum thermodynamic cycles.
    Prakash A; Kumar A; Benjamin C
    Phys Rev E; 2022 Nov; 106(5-1):054112. PubMed ID: 36559514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.