These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system. Wang R; Wang J; He J; Ma Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021133. PubMed ID: 23005748 [TBL] [Abstract][Full Text] [Related]
25. Collective effects on the performance and stability of quantum heat engines. Souza LDS; Manzano G; Fazio R; Iemini F Phys Rev E; 2022 Jul; 106(1-1):014143. PubMed ID: 35974546 [TBL] [Abstract][Full Text] [Related]
26. A quantum-dot heat engine operating close to the thermodynamic efficiency limits. Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221 [TBL] [Abstract][Full Text] [Related]
27. Tuning the performance of a micrometer-sized Stirling engine through reservoir engineering. Roy N; Leroux N; Sood AK; Ganapathy R Nat Commun; 2021 Aug; 12(1):4927. PubMed ID: 34389717 [TBL] [Abstract][Full Text] [Related]
28. Work extremum principle: structure and function of quantum heat engines. Allahverdyan AE; Johal RS; Mahler G Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041118. PubMed ID: 18517589 [TBL] [Abstract][Full Text] [Related]
29. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines. Kato A; Tanimura Y J Chem Phys; 2016 Dec; 145(22):224105. PubMed ID: 27984915 [TBL] [Abstract][Full Text] [Related]
30. Quantum thermodynamic cycles and quantum heat engines. Quan HT; Liu YX; Sun CP; Nori F Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031105. PubMed ID: 17930197 [TBL] [Abstract][Full Text] [Related]
31. Efficiency at maximum power of a heat engine working with a two-level atomic system. Wang R; Wang J; He J; Ma Y Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385 [TBL] [Abstract][Full Text] [Related]
32. Dynamical control of quantum heat engines using exceptional points. Zhang JW; Zhang JQ; Ding GY; Li JC; Bu JT; Wang B; Yan LL; Su SL; Chen L; Nori F; Özdemir ŞK; Zhou F; Jing H; Feng M Nat Commun; 2022 Oct; 13(1):6225. PubMed ID: 36266331 [TBL] [Abstract][Full Text] [Related]
33. Designing a highly efficient graphene quantum spin heat engine. Mani A; Pal S; Benjamin C Sci Rep; 2019 Apr; 9(1):6018. PubMed ID: 30979964 [TBL] [Abstract][Full Text] [Related]
34. Quantum afterburner: improving the efficiency of an ideal heat engine. Scully MO Phys Rev Lett; 2002 Feb; 88(5):050602. PubMed ID: 11863710 [TBL] [Abstract][Full Text] [Related]
35. Spin Quantum Heat Engine Quantified by Quantum Steering. Ji W; Chai Z; Wang M; Guo Y; Rong X; Shi F; Ren C; Wang Y; Du J Phys Rev Lett; 2022 Mar; 128(9):090602. PubMed ID: 35302812 [TBL] [Abstract][Full Text] [Related]
37. Quantum heat engine in the relativistic limit: the case of a Dirac particle. Muñoz E; Peña FJ Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061108. PubMed ID: 23367894 [TBL] [Abstract][Full Text] [Related]