BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 34504315)

  • 1. A proteome-wide atlas of lysine-reactive chemistry.
    Abbasov ME; Kavanagh ME; Ichu TA; Lazear MR; Tao Y; Crowley VM; Am Ende CW; Hacker SM; Ho J; Dix MM; Suciu R; Hayward MM; Kiessling LL; Cravatt BF
    Nat Chem; 2021 Nov; 13(11):1081-1092. PubMed ID: 34504315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global profiling of lysine reactivity and ligandability in the human proteome.
    Hacker SM; Backus KM; Lazear MR; Forli S; Correia BE; Cravatt BF
    Nat Chem; 2017 Dec; 9(12):1181-1190. PubMed ID: 29168484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic Synthesis and Chemical Proteomics Reveal the Mechanism of Action and Functional Targets of Phloroglucinol Meroterpenoids.
    Bracken AK; Gekko CE; Suss NO; Lueders EE; Cui Q; Fu Q; Lui ACW; Anderson ET; Zhang S; Abbasov ME
    J Am Chem Soc; 2024 Jan; 146(4):2524-2548. PubMed ID: 38230968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes.
    Chen Y; Craven GB; Kamber RA; Cuesta A; Zhersh S; Moroz YS; Bassik MC; Taunton J
    Nat Chem; 2023 Nov; 15(11):1616-1625. PubMed ID: 37460812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysine-Targeted Inhibitors and Chemoproteomic Probes.
    Cuesta A; Taunton J
    Annu Rev Biochem; 2019 Jun; 88():365-381. PubMed ID: 30633551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable Amine-Reactive Electrophiles for Selective Profiling of Lysine.
    Tang KC; Cao J; Boatner LM; Li L; Farhi J; Houk KN; Spangle J; Backus KM; Raj M
    Angew Chem Int Ed Engl; 2022 Jan; 61(5):e202112107. PubMed ID: 34762358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the proteome reactivity and selectivity of aryl halides.
    Shannon DA; Banerjee R; Webster ER; Bak DW; Wang C; Weerapana E
    J Am Chem Soc; 2014 Mar; 136(9):3330-3. PubMed ID: 24548313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of Reactive Cysteine Profiling.
    Backus KM
    Curr Top Microbiol Immunol; 2019; 420():375-417. PubMed ID: 30105421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.
    Ward CC; Kleinman JI; Nomura DK
    ACS Chem Biol; 2017 Jun; 12(6):1478-1483. PubMed ID: 28445029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disparate proteome reactivity profiles of carbon electrophiles.
    Weerapana E; Simon GM; Cravatt BF
    Nat Chem Biol; 2008 Jul; 4(7):405-7. PubMed ID: 18488014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global Reactivity Profiling of the Catalytic Lysine in Human Kinome for Covalent Inhibitor Development.
    Tang G; Wang W; Zhu C; Huang H; Chen P; Wang X; Xu M; Sun J; Zhang CJ; Xiao Q; Gao L; Zhang ZM; Yao SQ
    Angew Chem Int Ed Engl; 2024 Mar; 63(12):e202316394. PubMed ID: 38248139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs.
    Wang Y; Dix MM; Bianco G; Remsberg JR; Lee HY; Kalocsay M; Gygi SP; Forli S; Vite G; Lawrence RM; Parker CG; Cravatt BF
    Nat Chem; 2019 Dec; 11(12):1113-1123. PubMed ID: 31659311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical proteomic identification of functional cysteines with atypical electrophile reactivities.
    Litwin K; Crowley VM; Suciu RM; Boger DL; Cravatt BF
    Tetrahedron Lett; 2021 Mar; 67():. PubMed ID: 33776155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reimagining Druggability Using Chemoproteomic Platforms.
    Spradlin JN; Zhang E; Nomura DK
    Acc Chem Res; 2021 Apr; 54(7):1801-1813. PubMed ID: 33733731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A chemical proteomics approach for global mapping of functional lysines on cell surface of living cell.
    Wang T; Ma S; Ji G; Wang G; Liu Y; Zhang L; Zhang Y; Lu H
    Nat Commun; 2024 Apr; 15(1):2997. PubMed ID: 38589397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assigning functionality to cysteines by base editing of cancer dependency genes.
    Li H; Ma T; Remsberg JR; Won SJ; DeMeester KE; Njomen E; Ogasawara D; Zhao KT; Huang TP; Lu B; Simon GM; Melillo B; Schreiber SL; Lykke-Andersen J; Liu DR; Cravatt BF
    Nat Chem Biol; 2023 Nov; 19(11):1320-1330. PubMed ID: 37783940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome-wide covalent ligand discovery in native biological systems.
    Backus KM; Correia BE; Lum KM; Forli S; Horning BD; González-Páez GE; Chatterjee S; Lanning BR; Teijaro JR; Olson AJ; Wolan DW; Cravatt BF
    Nature; 2016 Jun; 534(7608):570-4. PubMed ID: 27309814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells.
    Vinogradova EV; Zhang X; Remillard D; Lazar DC; Suciu RM; Wang Y; Bianco G; Yamashita Y; Crowley VM; Schafroth MA; Yokoyama M; Konrad DB; Lum KM; Simon GM; Kemper EK; Lazear MR; Yin S; Blewett MM; Dix MM; Nguyen N; Shokhirev MN; Chin EN; Lairson LL; Melillo B; Schreiber SL; Forli S; Teijaro JR; Cravatt BF
    Cell; 2020 Aug; 182(4):1009-1026.e29. PubMed ID: 32730809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome-wide identification of SUMO2 modification sites.
    Tammsalu T; Matic I; Jaffray EG; Ibrahim AFM; Tatham MH; Hay RT
    Sci Signal; 2014 Apr; 7(323):rs2. PubMed ID: 24782567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific determination of lysine acetylation stoichiometries on the proteome-scale.
    Chen Y; Li Y
    Methods Enzymol; 2019; 626():115-132. PubMed ID: 31606072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.