These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34504412)

  • 1. Neural Encoding of the Reliability of Directional Information During the Preparation of Targeted Movements.
    Tzagarakis C; West S; Pellizzer G
    Front Neurosci; 2021; 15():679408. PubMed ID: 34504412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain oscillatory activity during motor preparation: effect of directional uncertainty on beta, but not alpha, frequency band.
    Tzagarakis C; West S; Pellizzer G
    Front Neurosci; 2015; 9():246. PubMed ID: 26257597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical beta-band power modulates with uncertainty in effector selection during motor planning.
    van Helvert MJL; Oostwoud Wijdenes L; Geerligs L; Medendorp WP
    J Neurophysiol; 2021 Dec; 126(6):1891-1902. PubMed ID: 34731060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Degree of Modulation of Beta Band Activity During Motor Planning Is Related to Trait Impulsivity.
    Tzagarakis C; Thompson A; Rogers RD; Pellizzer G
    Front Integr Neurosci; 2019; 13():1. PubMed ID: 30705624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Attention, Motor Intention, and Bayesian Cue Predictability in the Human Brain.
    Kuhns AB; Dombert PL; Mengotti P; Fink GR; Vossel S
    J Neurosci; 2017 May; 37(21):5334-5344. PubMed ID: 28450541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of cue predictiveness during intentional and incidental associative learning: A time-frequency study.
    Do Carmo-Blanco N; Allen JJB
    Int J Psychophysiol; 2019 Sep; 143():80-87. PubMed ID: 31254544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of return in time-lapse: Brain Rhythms during grip force control for spatial attention.
    Zappasodi F; Croce P; Di Matteo R; Brunetti M
    Neuropsychologia; 2021 Dec; 163():108068. PubMed ID: 34687747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-temporal localisation of attentional orienting to gaze and peripheral cues.
    Nagata Y; Bayless SJ; Mills T; Taylor MJ
    Brain Res; 2012 Feb; 1439():44-53. PubMed ID: 22277356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparatory α-band oscillations reflect spatial gating independently of predictions regarding target identity.
    Wildegger T; van Ede F; Woolrich M; Gillebert CR; Nobre AC
    J Neurophysiol; 2017 Mar; 117(3):1385-1394. PubMed ID: 28077669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The modulatory effects of nicotine on parietal cortex activity in a cued target detection task depend on cue reliability.
    Giessing C; Thiel CM; Rösler F; Fink GR
    Neuroscience; 2006 Feb; 137(3):853-64. PubMed ID: 16309846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral control of directed visual attention and orienting saccades.
    Nagel-Leiby S; Buchtel HA; Welch KM
    Brain; 1990 Feb; 113 ( Pt 1)():237-76. PubMed ID: 2302535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral signature of attentional reorienting in the human brain.
    Spadone S; Betti V; Sestieri C; Pizzella V; Corbetta M; Della Penna S
    Neuroimage; 2021 Dec; 244():118616. PubMed ID: 34582947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theta Activity in the Left Dorsal Premotor Cortex During Action Re-Evaluation and Motor Reprogramming.
    Pellegrino G; Tomasevic L; Herz DM; Larsen KM; Siebner HR
    Front Hum Neurosci; 2018; 12():364. PubMed ID: 30297991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity.
    Indovina I; Macaluso E
    Magn Reson Imaging; 2004 Dec; 22(10):1477-86. PubMed ID: 15707797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateralization of frequency-specific networks for covert spatial attention to auditory stimuli.
    Thorpe S; D'Zmura M; Srinivasan R
    Brain Topogr; 2012 Jan; 25(1):39-54. PubMed ID: 21630112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local infusion of scopolamine into intraparietal cortex slows covert orienting in rhesus monkeys.
    Davidson MC; Marrocco RT
    J Neurophysiol; 2000 Mar; 83(3):1536-49. PubMed ID: 10712478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visuospatial information processing load and the ratio between parietal cue and target P3 amplitudes in the Attentional Network Test.
    Abramov DM; Pontes M; Pontes AT; Mourao-Junior CA; Vieira J; Quero Cunha C; Tamborino T; Galhanone PR; deAzevedo LC; Lazarev VV
    Neurosci Lett; 2017 Apr; 647():91-96. PubMed ID: 28336341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between posterior gamma and frontal alpha/beta oscillations during imagined actions.
    de Lange FP; Jensen O; Bauer M; Toni I
    Front Hum Neurosci; 2008; 2():7. PubMed ID: 18958208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trial-by-trial modulation of express visuomotor responses induced by symbolic or barely detectable cues.
    Contemori S; Loeb GE; Corneil BD; Wallis G; Carroll TJ
    J Neurophysiol; 2021 Nov; 126(5):1507-1523. PubMed ID: 34550012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-motor deficits in left spatial neglect: An EEG study on Contingent Negative Variation (CNV) and response-related beta oscillatory activity.
    Lasaponara S; Pinto M; Scozia G; Pellegrino M; D'Onofrio M; Isabella R; Doricchi F
    Neuropsychologia; 2020 Oct; 147():107572. PubMed ID: 32721497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.