These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34504412)

  • 41. Prefrontal task-related activity representing visual cue location or saccade direction in spatial working memory tasks.
    Takeda K; Funahashi S
    J Neurophysiol; 2002 Jan; 87(1):567-88. PubMed ID: 11784772
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional localization and effective connectivity of cortical theta and alpha oscillatory activity during an attention task.
    Kitaura Y; Nishida K; Yoshimura M; Mii H; Katsura K; Ueda S; Ikeda S; Pascual-Marqui RD; Ishii R; Kinoshita T
    Clin Neurophysiol Pract; 2017; 2():193-200. PubMed ID: 30214995
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Processing of conflicting cues in an attention-shift paradigm studied with fMRI.
    Thomsen T; Specht K; Ersland L; Hugdahl K
    Neurosci Lett; 2005 May 20-27; 380(1-2):138-42. PubMed ID: 15854766
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Express attentional re-engagement but delayed entry into consciousness following invalid spatial cues in visual search.
    Brisson B; Jolicoeur P
    PLoS One; 2008; 3(12):e3967. PubMed ID: 19088847
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Theta and alpha oscillations as signatures of internal and external attention to delayed intentions: A magnetoencephalography (MEG) study.
    Cona G; Chiossi F; Di Tomasso S; Pellegrino G; Piccione F; Bisiacchi P; Arcara G
    Neuroimage; 2020 Jan; 205():116295. PubMed ID: 31629832
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex.
    Vossel S; Thiel CM; Fink GR
    Neuroimage; 2006 Sep; 32(3):1257-64. PubMed ID: 16846742
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Movement-related phase locking in the delta-theta frequency band.
    Popovych S; Rosjat N; Toth TI; Wang BA; Liu L; Abdollahi RO; Viswanathan S; Grefkes C; Fink GR; Daun S
    Neuroimage; 2016 Oct; 139():439-449. PubMed ID: 27374370
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Perceived mental effort correlates with changes in tonic arousal during attentional tasks.
    Howells FM; Stein DJ; Russell VA
    Behav Brain Funct; 2010 Jul; 6():39. PubMed ID: 20615239
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Processing of visual signals for direct specification of motor targets and for conceptual representation of action targets in the dorsal and ventral premotor cortex.
    Yamagata T; Nakayama Y; Tanji J; Hoshi E
    J Neurophysiol; 2009 Dec; 102(6):3280-94. PubMed ID: 19793880
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neural dynamics supporting auditory long-term memory effects on target detection.
    Zimmermann J; Ross B; Moscovitch M; Alain C
    Neuroimage; 2020 Sep; 218():116979. PubMed ID: 32447014
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Informative Cues Facilitate Saccadic Localization in Blindsight Monkeys.
    Yoshida M; Hafed ZM; Isa T
    Front Syst Neurosci; 2017; 11():5. PubMed ID: 28239342
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preferential representation of instructed target location versus limb trajectory in dorsal premotor area.
    Shen L; Alexander GE
    J Neurophysiol; 1997 Mar; 77(3):1195-212. PubMed ID: 9084590
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gearing up for action: attentive tracking dynamically tunes sensory and motor oscillations in the alpha and beta band.
    Tan H-RM; Leuthold H; Gross J
    Neuroimage; 2013 Nov; 82():634-44. PubMed ID: 23672768
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Blocking of irrelevant memories by posterior alpha activity boosts memory encoding.
    Park H; Lee DS; Kang E; Kang H; Hahm J; Kim JS; Chung CK; Jensen O
    Hum Brain Mapp; 2014 Aug; 35(8):3972-87. PubMed ID: 24522937
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Retrospective Cues Mitigate Information Loss in Human Cortex during Working Memory Storage.
    Ester EF; Nouri A; Rodriguez L
    J Neurosci; 2018 Oct; 38(40):8538-8548. PubMed ID: 30126971
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neuronal Activity in the Premotor Cortex of Monkeys Reflects Both Cue Salience and Motivation for Action Generation and Inhibition.
    Giamundo M; Giarrocco F; Brunamonti E; Fabbrini F; Pani P; Ferraina S
    J Neurosci; 2021 Sep; 41(36):7591-7606. PubMed ID: 34330772
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Covert orienting of attention in macaques. II. Contributions of parietal cortex.
    Robinson DL; Bowman EM; Kertzman C
    J Neurophysiol; 1995 Aug; 74(2):698-712. PubMed ID: 7472375
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.
    Daume J; Gruber T; Engel AK; Friese U
    J Neurosci; 2017 Jan; 37(2):313-322. PubMed ID: 28077711
    [TBL] [Abstract][Full Text] [Related]  

  • 60. FMRI correlates of visuo-spatial reorienting investigated with an attention shifting double-cue paradigm.
    Natale E; Marzi CA; Macaluso E
    Hum Brain Mapp; 2009 Aug; 30(8):2367-81. PubMed ID: 19034897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.