These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34504515)

  • 1. Cascade Deep Forest With Heterogeneous Similarity Measures for Drug-Target Interaction Prediction.
    Zheng Y; Wu Z
    Front Genet; 2021; 12():702259. PubMed ID: 34504515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Machine Learning-Based Biological Drug-Target Interaction Prediction Method for a Tripartite Heterogeneous Network.
    Zheng Y; Wu Z
    ACS Omega; 2021 Feb; 6(4):3037-3045. PubMed ID: 33553921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks.
    Jarada TN; Rokne JG; Alhajj R
    BMC Bioinformatics; 2021 Jan; 22(1):28. PubMed ID: 33482713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tripartite Network-Based Repurposing Method Using Deep Learning to Compute Similarities for Drug-Target Prediction.
    Zong N; Wong RSN; Ngo V
    Methods Mol Biol; 2019; 1903():317-328. PubMed ID: 30547451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network.
    Zhou D; Xu Z; Li W; Xie X; Peng S
    Bioinformatics; 2021 Dec; 37(23):4485-4492. PubMed ID: 34180970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features.
    Chu Y; Kaushik AC; Wang X; Wang W; Zhang Y; Shan X; Salahub DR; Xiong Y; Wei DQ
    Brief Bioinform; 2021 Jan; 22(1):451-462. PubMed ID: 31885041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting drug-drug interactions using multi-modal deep auto-encoders based network embedding and positive-unlabeled learning.
    Zhang Y; Qiu Y; Cui Y; Liu S; Zhang W
    Methods; 2020 Jul; 179():37-46. PubMed ID: 32497603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations.
    Zong N; Kim H; Ngo V; Harismendy O
    Bioinformatics; 2017 Aug; 33(15):2337-2344. PubMed ID: 28430977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding.
    Yue Y; He S
    BMC Bioinformatics; 2021 Sep; 22(1):418. PubMed ID: 34479477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of drug-target interaction by label propagation with mutual interaction information derived from heterogeneous network.
    Yan XY; Zhang SW; Zhang SY
    Mol Biosyst; 2016 Feb; 12(2):520-31. PubMed ID: 26675534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction.
    Liu L; Zhang Q; Wei Y; Zhao Q; Liao B
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-based prediction of drug-target interactions using an arbitrary-order proximity embedded deep forest.
    Zeng X; Zhu S; Hou Y; Zhang P; Li L; Li J; Huang LF; Lewis SJ; Nussinov R; Cheng F
    Bioinformatics; 2020 May; 36(9):2805-2812. PubMed ID: 31971579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating Biological Networks for Drug Target Prediction and Prioritization.
    Ji X; Freudenberg JM; Agarwal P
    Methods Mol Biol; 2019; 1903():203-218. PubMed ID: 30547444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug-target interactions prediction using marginalized denoising model on heterogeneous networks.
    Tang C; Zhong C; Chen D; Wang J
    BMC Bioinformatics; 2020 Jul; 21(1):330. PubMed ID: 32703151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of drug sensitivity based on multi-omics data using deep learning and similarity network fusion approaches.
    Liu XY; Mei XY
    Front Bioeng Biotechnol; 2023; 11():1156372. PubMed ID: 37139048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug Repositioning Based on the Enhanced Message Passing and Hypergraph Convolutional Networks.
    Huang W; Li Z; Kang Y; Ye X; Feng W
    Biomolecules; 2022 Nov; 12(11):. PubMed ID: 36359016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction.
    Gu Y; Zheng S; Yin Q; Jiang R; Li J
    Comput Biol Med; 2022 Nov; 150():106127. PubMed ID: 36182762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico drug repositioning using deep learning and comprehensive similarity measures.
    Yi HC; You ZH; Wang L; Su XR; Zhou X; Jiang TH
    BMC Bioinformatics; 2021 Jun; 22(Suppl 3):293. PubMed ID: 34074242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting drug-target interactions using matrix factorization with self-paced learning and dual similarity information.
    Ling C; Zeng T; Dang Q; Liang Y; Liu X; Xie S
    Technol Health Care; 2024; 32(S1):49-64. PubMed ID: 38759038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.