BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 34504687)

  • 1. PEGS: An efficient tool for gene set enrichment within defined sets of genomic intervals.
    Briggs P; Hunter AL; Yang SH; Sharrocks AD; Iqbal M
    F1000Res; 2021; 10():570. PubMed ID: 34504687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory annotation of genomic intervals based on tissue-specific expression QTLs.
    Xu T; Jin P; Qin ZS
    Bioinformatics; 2020 Feb; 36(3):690-697. PubMed ID: 31504167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seten: a tool for systematic identification and comparison of processes, phenotypes, and diseases associated with RNA-binding proteins from condition-specific CLIP-seq profiles.
    Budak G; Srivastava R; Janga SC
    RNA; 2017 Jun; 23(6):836-846. PubMed ID: 28336542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ALGAEFUN with MARACAS, microALGAE FUNctional enrichment tool for MicroAlgae RnA-seq and Chip-seq AnalysiS.
    Romero-Losada AB; Arvanitidou C; de Los Reyes P; García-González M; Romero-Campero FJ
    BMC Bioinformatics; 2022 Mar; 23(1):113. PubMed ID: 35361110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential motif enrichment analysis of paired ChIP-seq experiments.
    Lesluyes T; Johnson J; Machanick P; Bailey TL
    BMC Genomics; 2014 Sep; 15(1):752. PubMed ID: 25179504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of VDR genome wide binding and GWAS genetic variation data reveals co-occurrence of VDR and NF-κB binding that is linked to immune phenotypes.
    Singh PK; van den Berg PR; Long MD; Vreugdenhil A; Grieshober L; Ochs-Balcom HM; Wang J; Delcambre S; Heikkinen S; Carlberg C; Campbell MJ; Sucheston-Campbell LE
    BMC Genomics; 2017 Feb; 18(1):132. PubMed ID: 28166722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide analysis of PDX1 target genes in human pancreatic progenitors.
    Wang X; Sterr M; Burtscher I; Chen S; Hieronimus A; Machicao F; Staiger H; Häring HU; Lederer G; Meitinger T; Cernilogar FM; Schotta G; Irmler M; Beckers J; Hrabě de Angelis M; Ray M; Wright CVE; Bakhti M; Lickert H
    Mol Metab; 2018 Mar; 9():57-68. PubMed ID: 29396371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing Proximity of Genomic Regions to Transcription Start Sites and Enhancers Complements Gene Set Enrichment Testing.
    Lee C; Wang K; Qin T; Sartor MA
    Front Genet; 2020; 11():199. PubMed ID: 32211031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. regSNPs-ASB: A Computational Framework for Identifying Allele-Specific Transcription Factor Binding From ATAC-seq Data.
    Xu S; Feng W; Lu Z; Yu CY; Shao W; Nakshatri H; Reiter JL; Gao H; Chu X; Wang Y; Liu Y
    Front Bioeng Biotechnol; 2020; 8():886. PubMed ID: 32850739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LncSEA: a platform for long non-coding RNA related sets and enrichment analysis.
    Chen J; Zhang J; Gao Y; Li Y; Feng C; Song C; Ning Z; Zhou X; Zhao J; Feng M; Zhang Y; Wei L; Pan Q; Jiang Y; Qian F; Han J; Yang Y; Wang Q; Li C
    Nucleic Acids Res; 2021 Jan; 49(D1):D969-D980. PubMed ID: 33045741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TFEA.ChIP: a tool kit for transcription factor binding site enrichment analysis capitalizing on ChIP-seq datasets.
    Puente-Santamaria L; Wasserman WW; Del Peso L
    Bioinformatics; 2019 Dec; 35(24):5339-5340. PubMed ID: 31347689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GenomicDistributions: fast analysis of genomic intervals with Bioconductor.
    Kupkova K; Mosquera JV; Smith JP; Stolarczyk M; Danehy TL; Lawson JT; Xue B; Stubbs JT; LeRoy N; Sheffield NC
    BMC Genomics; 2022 Apr; 23(1):299. PubMed ID: 35413804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ChIP-Enrich: gene set enrichment testing for ChIP-seq data.
    Welch RP; Lee C; Imbriano PM; Patil S; Weymouth TE; Smith RA; Scott LJ; Sartor MA
    Nucleic Acids Res; 2014 Jul; 42(13):e105. PubMed ID: 24878920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RSAT::Plants: Motif Discovery in ChIP-Seq Peaks of Plant Genomes.
    Castro-Mondragon JA; Rioualen C; Contreras-Moreira B; van Helden J
    Methods Mol Biol; 2016; 1482():297-322. PubMed ID: 27557775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PAPST, a User Friendly and Powerful Java Platform for ChIP-Seq Peak Co-Localization Analysis and Beyond.
    Bible PW; Kanno Y; Wei L; Brooks SR; O'Shea JJ; Morasso MI; Loganantharaj R; Sun HW
    PLoS One; 2015; 10(5):e0127285. PubMed ID: 25970601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative analysis of C. elegans modENCODE ChIP-seq data sets to infer gene regulatory interactions.
    Van Nostrand EL; Kim SK
    Genome Res; 2013 Jun; 23(6):941-53. PubMed ID: 23531767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GREAT improves functional interpretation of cis-regulatory regions.
    McLean CY; Bristor D; Hiller M; Clarke SL; Schaar BT; Lowe CB; Wenger AM; Bejerano G
    Nat Biotechnol; 2010 May; 28(5):495-501. PubMed ID: 20436461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of transcriptional regulation of the small leucine rich proteoglycans.
    Tasheva ES; Klocke B; Conrad GW
    Mol Vis; 2004 Oct; 10():758-72. PubMed ID: 15496828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ChIPSummitDB: a ChIP-seq-based database of human transcription factor binding sites and the topological arrangements of the proteins bound to them.
    Czipa E; Schiller M; Nagy T; Kontra L; Steiner L; Koller J; Pálné-Szén O; Barta E
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 31942977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.