BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 34504786)

  • 1. A Novel Oral Arginase 1/2 Inhibitor Enhances the Antitumor Effect of PD-1 Inhibition in Murine Experimental Gliomas by Altering the Immunosuppressive Environment.
    Pilanc P; Wojnicki K; Roura AJ; Cyranowski S; Ellert-Miklaszewska A; Ochocka N; Gielniewski B; Grzybowski MM; Błaszczyk R; Stańczak PS; Dobrzański P; Kaminska B
    Front Oncol; 2021; 11():703465. PubMed ID: 34504786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment.
    Steggerda SM; Bennett MK; Chen J; Emberley E; Huang T; Janes JR; Li W; MacKinnon AL; Makkouk A; Marguier G; Murray PJ; Neou S; Pan A; Parlati F; Rodriguez MLM; Van de Velde LA; Wang T; Works M; Zhang J; Zhang W; Gross MI
    J Immunother Cancer; 2017 Dec; 5(1):101. PubMed ID: 29254508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginase 1-Based Immune Modulatory Vaccines Induce Anticancer Immunity and Synergize with Anti-PD-1 Checkpoint Blockade.
    Aaboe Jørgensen M; Ugel S; Linder Hübbe M; Carretta M; Perez-Penco M; Weis-Banke SE; Martinenaite E; Kopp K; Chapellier M; Adamo A; De Sanctis F; Frusteri C; Iezzi M; Zocca MB; Hargbøll Madsen D; Wakatsuki Pedersen A; Bronte V; Andersen MH
    Cancer Immunol Res; 2021 Nov; 9(11):1316-1326. PubMed ID: 34518197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Arginase Expression in Glioma-Associated Microglia and Macrophages.
    Zhang I; Alizadeh D; Liang J; Zhang L; Gao H; Song Y; Ren H; Ouyang M; Wu X; D'Apuzzo M; Badie B
    PLoS One; 2016; 11(12):e0165118. PubMed ID: 27936099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and mechanistic advantage of the use of a bifunctional anti-PD-L1/IL-15 superagonist.
    Knudson KM; Hicks KC; Ozawa Y; Schlom J; Gameiro SR
    J Immunother Cancer; 2020 Apr; 8(1):. PubMed ID: 32303618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of arginase modulates T-cell response in the tumor microenvironment of lung carcinoma.
    Sosnowska A; Chlebowska-Tuz J; Matryba P; Pilch Z; Greig A; Wolny A; Grzywa TM; Rydzynska Z; Sokolowska O; Rygiel TP; Grzybowski M; Stanczak P; Blaszczyk R; Nowis D; Golab J
    Oncoimmunology; 2021; 10(1):1956143. PubMed ID: 34367736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas.
    Flores-Toro JA; Luo D; Gopinath A; Sarkisian MR; Campbell JJ; Charo IF; Singh R; Schall TJ; Datta M; Jain RK; Mitchell DA; Harrison JK
    Proc Natl Acad Sci U S A; 2020 Jan; 117(2):1129-1138. PubMed ID: 31879345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The MEK inhibitor selumetinib complements CTLA-4 blockade by reprogramming the tumor immune microenvironment.
    Poon E; Mullins S; Watkins A; Williams GS; Koopmann JO; Di Genova G; Cumberbatch M; Veldman-Jones M; Grosskurth SE; Sah V; Schuller A; Reimer C; Dovedi SJ; Smith PD; Stewart R; Wilkinson RW
    J Immunother Cancer; 2017 Aug; 5(1):63. PubMed ID: 28807001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune microenvironment of experimental rat C6 gliomas resembles human glioblastomas.
    Gieryng A; Pszczolkowska D; Bocian K; Dabrowski M; Rajan WD; Kloss M; Mieczkowski J; Kaminska B
    Sci Rep; 2017 Dec; 7(1):17556. PubMed ID: 29242629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginase 1 is a key driver of immune suppression in pancreatic cancer.
    Menjivar RE; Nwosu ZC; Du W; Donahue KL; Hong HS; Espinoza C; Brown K; Velez-Delgado A; Yan W; Lima F; Bischoff A; Kadiyala P; Salas-Escabillas D; Crawford HC; Bednar F; Carpenter E; Zhang Y; Halbrook CJ; Lyssiotis CA; Pasca di Magliano M
    Elife; 2023 Feb; 12():. PubMed ID: 36727849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell RNA sequencing reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancreatic cancer.
    Pan Y; Lu F; Fei Q; Yu X; Xiong P; Yu X; Dang Y; Hou Z; Lin W; Lin X; Zhang Z; Pan M; Huang H
    J Hematol Oncol; 2019 Nov; 12(1):124. PubMed ID: 31771616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of Myeloid Cell Arginase Activity leads to Therapeutic Response in a NSCLC Mouse Model by Activating Anti-Tumor Immunity.
    Miret JJ; Kirschmeier P; Koyama S; Zhu M; Li YY; Naito Y; Wu M; Malladi VS; Huang W; Walker W; Palakurthi S; Dranoff G; Hammerman PS; Pecot CV; Wong KK; Akbay EA
    J Immunother Cancer; 2019 Feb; 7(1):32. PubMed ID: 30728077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial arginase-2 is a cell‑autonomous regulator of CD8+ T cell function and antitumor efficacy.
    Martí i Líndez AA; Dunand-Sauthier I; Conti M; Gobet F; Núñez N; Hannich JT; Riezman H; Geiger R; Piersigilli A; Hahn K; Lemeille S; Becher B; De Smedt T; Hugues S; Reith W
    JCI Insight; 2019 Nov; 4(24):. PubMed ID: 31751318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment.
    Su X; Xu Y; Fox GC; Xiang J; Kwakwa KA; Davis JL; Belle JI; Lee WC; Wong WH; Fontana F; Hernandez-Aya LF; Kobayashi T; Tomasson HM; Su J; Bakewell SJ; Stewart SA; Egbulefu C; Karmakar P; Meyer MA; Veis DJ; DeNardo DG; Lanza GM; Achilefu S; Weilbaecher KN
    J Clin Invest; 2021 Oct; 131(20):. PubMed ID: 34520398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OATD-02 Validates the Benefits of Pharmacological Inhibition of Arginase 1 and 2 in Cancer.
    Grzybowski MM; Stańczak PS; Pomper P; Błaszczyk R; Borek B; Gzik A; Nowicka J; Jędrzejczak K; Brzezińska J; Rejczak T; Güner-Chalimoniuk NC; Kikulska A; Mlącki M; Pęczkowicz-Szyszka J; Olczak J; Gołębiowski A; Dzwonek K; Dobrzański P; Zasłona Z
    Cancers (Basel); 2022 Aug; 14(16):. PubMed ID: 36010962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymorphonuclear-MDSCs Facilitate Tumor Regrowth After Radiation by Suppressing CD8
    Zhang Md J; Zhang Md L; Yang Md Y; Liu Md Q; Ma Md H; Huang Md A; Zhao Md Y; Xia Md Z; Liu Md T; Wu Md G
    Int J Radiat Oncol Biol Phys; 2021 Apr; 109(5):1533-1546. PubMed ID: 33238192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment.
    Hardcastle J; Mills L; Malo CS; Jin F; Kurokawa C; Geekiyanage H; Schroeder M; Sarkaria J; Johnson AJ; Galanis E
    Neuro Oncol; 2017 Apr; 19(4):493-502. PubMed ID: 27663389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blocking NHE1 stimulates glioma tumor immunity by restoring OXPHOS function of myeloid cells.
    Hasan MN; Luo L; Ding D; Song S; Bhuiyan MIH; Liu R; Foley LM; Guan X; Kohanbash G; Hitchens TK; Castro MG; Zhang Z; Sun D
    Theranostics; 2021; 11(3):1295-1309. PubMed ID: 33391535
    [No Abstract]   [Full Text] [Related]  

  • 19. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation.
    Chen X; Gao A; Zhang F; Yang Z; Wang S; Fang Y; Li J; Wang J; Shi W; Wang L; Zheng Y; Sun Y
    Theranostics; 2021; 11(7):3392-3416. PubMed ID: 33537094
    [No Abstract]   [Full Text] [Related]  

  • 20. Targeting arginase-1 exerts antitumor effects in multiple myeloma and mitigates bortezomib-induced cardiotoxicity.
    Ramji K; Grzywa TM; Sosnowska A; Paterek A; Okninska M; Pilch Z; Barankiewicz J; Garbicz F; Borg K; Bany-Laszewicz U; Zerrouqi A; Pyrzynska B; Rodziewicz-Lurzynska A; Papiernik D; Sklepkiewicz P; Kedzierska H; Staruch A; Sadowski R; Ciepiela O; Lech-Maranda E; Juszczynski P; Mackiewicz U; Maczewski M; Nowis D; Golab J
    Sci Rep; 2022 Nov; 12(1):19660. PubMed ID: 36385153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.