These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 34504864)

  • 1. Advances in Skin Tissue Bioengineering and the Challenges of Clinical Translation.
    Dearman BL; Boyce ST; Greenwood JE
    Front Surg; 2021; 8():640879. PubMed ID: 34504864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition and Performance of Autologous Engineered Skin Substitutes for Repair or Regeneration of Excised, Full-Thickness Burns.
    Boyce ST; Kagan RJ
    J Burn Care Res; 2023 Jan; 44(Suppl_1):S50-S56. PubMed ID: 35917370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 1999 clinical research award. Cultured skin substitutes combined with Integra Artificial Skin to replace native skin autograft and allograft for the closure of excised full-thickness burns.
    Boyce ST; Kagan RJ; Meyer NA; Yakuboff KP; Warden GD
    J Burn Care Rehabil; 1999; 20(6):453-61. PubMed ID: 10613682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in the Design of Three-Dimensional and Bioprinted Scaffolds for Full-Thickness Wound Healing.
    Tan SH; Ngo ZH; Sci DB; Leavesley D; Liang K
    Tissue Eng Part B Rev; 2022 Feb; 28(1):160-181. PubMed ID: 33446047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparative Analysis of the Outcomes of Various Graft Types in Burn Reconstruction Over the Past 24 Years: A Systematic Review.
    Aleman Paredes K; Selaya Rojas JC; Flores Valdés JR; Castillo JL; Montelongo Quevedo M; Mijangos Delgado FJ; de la Cruz Durán HA; Nolasco Mendoza CL; Nuñez Vazquez EJ
    Cureus; 2024 Feb; 16(2):e54277. PubMed ID: 38496152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue engineering of skin and regenerative medicine for wound care.
    Boyce ST; Lalley AL
    Burns Trauma; 2018; 6():4. PubMed ID: 30009192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skin tissue engineering advances in severe burns: review and therapeutic applications.
    Chua AW; Khoo YC; Tan BK; Tan KC; Foo CL; Chong SJ
    Burns Trauma; 2016; 4():3. PubMed ID: 27574673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioengineered Skin Substitutes: the Role of Extracellular Matrix and Vascularization in the Healing of Deep Wounds.
    Urciuolo F; Casale C; Imparato G; Netti PA
    J Clin Med; 2019 Dec; 8(12):. PubMed ID: 31805652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Randomized, Paired-Site Comparison of Autologous Engineered Skin Substitutes and Split-Thickness Skin Graft for Closure of Extensive, Full-Thickness Burns.
    Boyce ST; Simpson PS; Rieman MT; Warner PM; Yakuboff KP; Bailey JK; Nelson JK; Fowler LA; Kagan RJ
    J Burn Care Res; 2017; 38(2):61-70. PubMed ID: 27404165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue Engineering in Skin Substitute.
    Łabuś W; Kitala D; Szapski M; Klama-Baryła A; Kraut M; Smętek W
    Adv Exp Med Biol; 2021; 1345():193-208. PubMed ID: 34582024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Skin Substitutes-Potential of Tissue Engineered Skin for Facilitating Anti-Fibrotic Healing.
    Varkey M; Ding J; Tredget EE
    J Funct Biomater; 2015 Jul; 6(3):547-63. PubMed ID: 26184327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioengineered skin constructs and their use in wound healing.
    Lazic T; Falanga V
    Plast Reconstr Surg; 2011 Jan; 127 Suppl 1():75S-90S. PubMed ID: 21200276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks.
    Augustine R
    Prog Biomater; 2018 Jun; 7(2):77-92. PubMed ID: 29754201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue engineering of cultured skin substitutes.
    Horch RE; Kopp J; Kneser U; Beier J; Bach AD
    J Cell Mol Med; 2005; 9(3):592-608. PubMed ID: 16202208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of Suprathel(®) in deep dermal burns: first results of a prospective study.
    Keck M; Selig HF; Lumenta DB; Kamolz LP; Mittlböck M; Frey M
    Burns; 2012 May; 38(3):388-95. PubMed ID: 22078803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cultured skin substitutes reduce requirements for harvesting of skin autograft for closure of excised, full-thickness burns.
    Boyce ST; Kagan RJ; Greenhalgh DG; Warner P; Yakuboff KP; Palmieri T; Warden GD
    J Trauma; 2006 Apr; 60(4):821-9. PubMed ID: 16612303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new model for preclinical testing of dermal substitutes for human skin reconstruction.
    Hartmann-Fritsch F; Biedermann T; Braziulis E; Meuli M; Reichmann E
    Pediatr Surg Int; 2013 May; 29(5):479-88. PubMed ID: 23371301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioengineering methods employed in the study of wound healing of sulphur mustard burns.
    Graham JS; Schomacker KT; Glatter RD; Briscoe CM; Braue EH; Squibb KS
    Skin Res Technol; 2002 Feb; 8(1):57-69. PubMed ID: 12005121
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.