These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34505153)

  • 21. Climatic regulation of leaf and cambial phenology in Quercus pubescens: Their interlinkage and impact on xylem and phloem conduits.
    Gričar J; Jevšenak J; Hafner P; Prislan P; Ferlan M; Lavrič M; Vodnik D; Eler K
    Sci Total Environ; 2022 Jan; 802():149968. PubMed ID: 34525737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PtrHB7, a class III HD-Zip gene, plays a critical role in regulation of vascular cambium differentiation in Populus.
    Zhu Y; Song D; Sun J; Wang X; Li L
    Mol Plant; 2013 Jul; 6(4):1331-43. PubMed ID: 23288865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intra-annual dynamics of stem CO2 efflux in relation to cambial activity and xylem development in Pinus cembra.
    Gruber A; Wieser G; Oberhuber W
    Tree Physiol; 2009 May; 29(5):641-9. PubMed ID: 19203979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High levels of auxin signalling define the stem-cell organizer of the vascular cambium.
    Smetana O; Mäkilä R; Lyu M; Amiryousefi A; Sánchez Rodríguez F; Wu MF; Solé-Gil A; Leal Gavarrón M; Siligato R; Miyashima S; Roszak P; Blomster T; Reed JW; Broholm S; Mähönen AP
    Nature; 2019 Jan; 565(7740):485-489. PubMed ID: 30626967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcription factor NTL9 negatively regulates Arabidopsis vascular cambium development during stem secondary growth.
    Sugimoto H; Tanaka T; Muramoto N; Kitagawa-Yogo R; Mitsukawa N
    Plant Physiol; 2022 Oct; 190(3):1731-1746. PubMed ID: 35951755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wood Transcriptome Profiling Identifies Critical Pathway Genes of Secondary Wall Biosynthesis and Novel Regulators for Vascular Cambium Development in
    Kim MH; Cho JS; Jeon HW; Sangsawang K; Shim D; Choi YI; Park EJ; Lee H; Ko JH
    Genes (Basel); 2019 Sep; 10(9):. PubMed ID: 31500311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seasonal reorganization of the xylem transcriptome at different tree ages reveals novel insights into wood formation in Pinus radiata.
    Li X; Wu HX; Southerton SG
    New Phytol; 2010 Aug; 187(3):764-76. PubMed ID: 20561208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia.
    Samuels AL; Rensing KH; Douglas CJ; Mansfield SD; Dharmawardhana DP; Ellis BE
    Planta; 2002 Nov; 216(1):72-82. PubMed ID: 12430016
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biological Basis of Tree-Ring Formation: A Crash Course.
    Rathgeber CB; Cuny HE; Fonti P
    Front Plant Sci; 2016; 7():734. PubMed ID: 27303426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How Do Trees Grow in Girth? Controversy on the Role of Cellular Events in the Vascular Cambium.
    Wilczek-Ponce A; Włoch W; Iqbal M
    Acta Biotheor; 2021 Dec; 69(4):643-670. PubMed ID: 34152499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic and hormonal regulation of cambial development.
    Ursache R; Nieminen K; Helariutta Y
    Physiol Plant; 2013 Jan; 147(1):36-45. PubMed ID: 22551327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Dynamics of Cambial Stem Cell Activity.
    Fischer U; Kucukoglu M; Helariutta Y; Bhalerao RP
    Annu Rev Plant Biol; 2019 Apr; 70():293-319. PubMed ID: 30822110
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intra-annual dynamics of xylem growth in Pinus massoniana submitted to an experimental nitrogen addition in Central China.
    Zhang S; Huang JG; Rossi S; Ma Q; Yu B; Zhai L; Luo D; Guo X; Fu S; Zhang W
    Tree Physiol; 2017 Nov; 37(11):1546-1553. PubMed ID: 28985432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wood transcriptome analysis of Pinus densiflora identifies genes critical for secondary cell wall formation and NAC transcription factors involved in tracheid formation.
    Kim MH; Tran TNA; Cho JS; Park EJ; Lee H; Kim DG; Hwang S; Ko JH
    Tree Physiol; 2021 Jul; 41(7):1289-1305. PubMed ID: 33440425
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    Seyfferth C; Wessels BA; Vahala J; Kangasjärvi J; Delhomme N; Hvidsten TR; Tuominen H; Lundberg-Felten J
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution of an Indoleacetic Acid-oxidase-inhibitor in the Storage Root of Daucus carota.
    Jacobson BS; Caplin SM
    Plant Physiol; 1967 Apr; 42(4):578-84. PubMed ID: 16656541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of putative candidate genes for juvenile wood density in Pinus radiata.
    Li X; Wu HX; Southerton SG
    Tree Physiol; 2012 Aug; 32(8):1046-57. PubMed ID: 22826379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environmental drivers of cambial phenology in Great Basin bristlecone pine.
    Ziaco E; Biondi F; Rossi S; Deslauriers A
    Tree Physiol; 2016 Jul; 36(7):818-31. PubMed ID: 26917705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ubiquitinated DA1 negatively regulates vascular cambium activity through modulating the stability of WOX4 in Populus.
    Tang X; Wang C; Chai G; Wang D; Xu H; Liu Y; He G; Liu S; Zhang Y; Kong Y; Li S; Lu M; Sederoff RR; Li Q; Zhou G
    Plant Cell; 2022 Aug; 34(9):3364-3382. PubMed ID: 35703939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments.
    Gričar J; Prislan P; Gryc V; Vavrčík H; de Luis M; Cufar K
    Tree Physiol; 2014 Aug; 34(8):869-81. PubMed ID: 24728295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.