These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 34505247)
1. Transport of TiO Dai C; Shen H; Duan Y; You X; Lai X; Liu S; Zhang Y; Hon LK; Baek K; Tu Y; Zhou L; Xu D Environ Sci Pollut Res Int; 2022 Feb; 29(6):9306-9317. PubMed ID: 34505247 [TBL] [Abstract][Full Text] [Related]
2. Effect of surfactants on the transport of polyethylene and polypropylene microplastics in porous media. Jiang Y; Yin X; Xi X; Guan D; Sun H; Wang N Water Res; 2021 May; 196():117016. PubMed ID: 33735622 [TBL] [Abstract][Full Text] [Related]
3. Transport of ZIF-8 in porous media under the influence of surfactant type and nanoparticle concentration. Wen J; Yang L Water Res; 2022 Jun; 218():118490. PubMed ID: 35490456 [TBL] [Abstract][Full Text] [Related]
4. Nano-SiO Ghosh D; Das S; Gahlot VK; Pulimi M; Anand S; Chandrasekaran N; Rai PK; Mukherjee A J Contam Hydrol; 2022 Jun; 248():104029. PubMed ID: 35653834 [TBL] [Abstract][Full Text] [Related]
5. Effects of surfactants on graphene oxide nanoparticles transport in saturated porous media. Fan W; Jiang X; Lu Y; Huo M; Lin S; Geng Z J Environ Sci (China); 2015 Sep; 35():12-19. PubMed ID: 26354687 [TBL] [Abstract][Full Text] [Related]
6. Transport of TiO2 nanoparticles in soil in the presence of surfactants. Sun P; Zhang K; Fang J; Lin D; Wang M; Han J Sci Total Environ; 2015 Sep; 527-528():420-8. PubMed ID: 25981940 [TBL] [Abstract][Full Text] [Related]
7. Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Godinez IG; Darnault CJ Water Res; 2011 Jan; 45(2):839-51. PubMed ID: 20947120 [TBL] [Abstract][Full Text] [Related]
8. Surfactant-mediated mobility of carbon dots in saturated soil: comparison between anionic and cationic surfactants. Lu T; Chen J; Zhang Q; Zhang M; Li Y; Qi Z Environ Sci Pollut Res Int; 2023 Mar; 30(13):37622-37633. PubMed ID: 36572776 [TBL] [Abstract][Full Text] [Related]
9. Transport of polystyrene nanoplastics in porous media: Combined effects of two co-existing substances. Zhang M; Hou J; Xia J; Wu J; Zeng Y; Miao L; Lv B Sci Total Environ; 2023 Nov; 897():165275. PubMed ID: 37406707 [TBL] [Abstract][Full Text] [Related]
10. TiO₂ nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions. Esfandyari Bayat A; Junin R; Derahman MN; Samad AA Chemosphere; 2015 Sep; 134():7-15. PubMed ID: 25889359 [TBL] [Abstract][Full Text] [Related]
11. Deposition and release kinetics of nano-TiO2 in saturated porous media: effects of solution ionic strength and surfactants. Godinez IG; Darnault CJ; Khodadoust AP; Bogdan D Environ Pollut; 2013 Mar; 174():106-13. PubMed ID: 23246754 [TBL] [Abstract][Full Text] [Related]
12. Biosurfactant-mediated mobility of graphene oxide nanoparticles in saturated porous media. Chen J; Zhang Q; Zhu Y; Li Y; Chen W; Lu T; Qi Z Environ Sci Process Impacts; 2022 Oct; 24(10):1883-1894. PubMed ID: 36148869 [TBL] [Abstract][Full Text] [Related]
13. Significance of non-DLVO interactions on the co-transport of levofloxacin and titanium dioxide nanoparticles in porous media. Cui Y; Wu M; Lu G; Cheng Z; Chen M; Hao Y; Mo C; Li Q; Wu J; Wu J; Hu BX Environ Pollut; 2024 Jun; 351():124079. PubMed ID: 38692390 [TBL] [Abstract][Full Text] [Related]
14. Humic acid induced weak attachment of fullerene nC Wang Z; Li T; Shen C; Shang J; Shi K; Zhang Y; Li B J Contam Hydrol; 2020 May; 231():103630. PubMed ID: 32169749 [TBL] [Abstract][Full Text] [Related]
15. Surfactants-mediated the enhanced mobility of tetracycline in saturated porous media and its variation with aqueous chemistry. Wang F; Chen J; Xu Y; Farooq U; Lu T; Chen W; Wang X; Qi Z Chemosphere; 2022 Sep; 302():134887. PubMed ID: 35551941 [TBL] [Abstract][Full Text] [Related]
16. Effects of myo-inositol hexakisphosphate, ferrihydrite coating, ionic strength and pH on the transport of TiO Tang Y; Wang X; Yan Y; Zeng H; Wang G; Tan W; Liu F; Feng X Environ Pollut; 2019 Sep; 252(Pt B):1193-1201. PubMed ID: 31252117 [TBL] [Abstract][Full Text] [Related]
17. Detachment of fullerene nC60 nanoparticles in saturated porous media under flow/stop-flow conditions: Column experiments and mechanistic explanations. Wang Z; Wang D; Li B; Wang J; Li T; Zhang M; Huang Y; Shen C Environ Pollut; 2016 Jun; 213():698-709. PubMed ID: 27023279 [TBL] [Abstract][Full Text] [Related]
18. Transport and retention of copper oxide nanoparticles under unfavorable deposition conditions caused by repulsive van der Waals force in saturated porous media. Wu H; Fang H; Xu C; Ye J; Cai Q; Shi J Environ Pollut; 2020 Jan; 256():113400. PubMed ID: 31662262 [TBL] [Abstract][Full Text] [Related]
19. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter. Li C; Hassan A; Palmai M; Xie Y; Snee PT; Powell BA; Murdoch LC; Darnault CJG Environ Sci Pollut Res Int; 2021 Feb; 28(7):8050-8073. PubMed ID: 33051847 [TBL] [Abstract][Full Text] [Related]
20. Enhanced retention of bacteria by TiO2 nanoparticles in saturated porous media. Gentile GJ; Fidalgo de Cortalezzi MM J Contam Hydrol; 2016 Aug; 191():66-75. PubMed ID: 27258326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]