These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 3450541)

  • 1. X-ray microanalysis of fossil dinosaur bone: age differences in the calcium and phosphorus content of Gallimimus bullatus bones.
    Pawlicki R; Bolechała P
    Folia Histochem Cytobiol; 1987; 25(3-4):241-4. PubMed ID: 3450541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray microanalysis of fossil dinosaur bone: age differences in lead, iron, and magnesium content.
    Pawlicki R; Bolechała P
    Folia Histochem Cytobiol; 1991; 29(2):81-3. PubMed ID: 1804726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray microanalysis of the rat bone.
    Pawlicki R; Knychalska-Karwan Z; Karwan T
    Folia Biol (Krakow); 1987; 35(3-4):217-20. PubMed ID: 3436472
    [No Abstract]   [Full Text] [Related]  

  • 4. Electron probe energy dispersive X-ray microanalysis (EDXA) in the investigation of fossil bone: the case of Java man.
    Bartsiokas A; Day MH
    Proc Biol Sci; 1993 May; 252(1334):115-23. PubMed ID: 8391701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic pathways of the fossil dinosaur bones. Part I. Vascular communication system.
    Pawlicki R
    Folia Histochem Cytochem (Krakow); 1983; 21(3-4):253-61. PubMed ID: 6667913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scanning electron microscopic and electron microprobe X-ray analysis of cortical bone of fluoride-treated rabbits.
    Jha Mohan ; Susheela AK
    Int J Tissue React; 1984; 6(3):255-61. PubMed ID: 6480271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Distribution of mineral salts in structures of the compact substance of human bone].
    Bogatov VN; Denisov-Nikol'skiĭ IuI
    Arkh Anat Gistol Embriol; 1977 Dec; 73(12):61-8. PubMed ID: 603410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron microprobe analysis of elemental distribution in excavated human femurs.
    Lambert JB; Simpson SV; Buikstra JE; Hanson D
    Am J Phys Anthropol; 1983 Dec; 62(4):409-23. PubMed ID: 6666771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limitations of ZAF correction factors in the determination of calcium/phosphorus ratios: important forensic science considerations relevant to the analysis of bone fragments using scanning electron microscopy and energy-dispersive x-ray microanalysis.
    Payne CM; Cromey DW
    J Forensic Sci; 1990 May; 35(3):560-8. PubMed ID: 2348174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood vessels and red blood cells preserved in dinosaur bones.
    Pawlicki R; Nowogrodzka-Zagórska M
    Ann Anat; 1998 Feb; 180(1):73-7. PubMed ID: 9488909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic pathways of the fossil dinosaur bones Part II. Vascular canal in the communication system.
    Pawlicki R
    Folia Histochem Cytobiol; 1984; 22(1):33-41. PubMed ID: 6234214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic pathways of the fossil dinosaur bones. Part III. Intermediary and other osteocytes in the system of metabolic pathways of dinosaur bone.
    Pawlicki R
    Folia Histochem Cytobiol; 1984; 22(2):91-7. PubMed ID: 6469130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volumes from which calcium and phosphorus X-rays arise in electron probe emission microanalysis of bone: Monte Carlo simulation.
    Howell PG; Boyde A
    Calcif Tissue Int; 2003 Jun; 72(6):745-9. PubMed ID: 14563004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage.
    Landis WJ
    Scan Electron Microsc; 1979; (2):555-70. PubMed ID: 524025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histochemical reactions for mucopolysaccharides in the dinosaur bone. Studies on Epon- and methacrylate-embedded semithin sections as well as on isolated osteocytes and ground sections of bone.
    Pawlicki R
    Acta Histochem; 1977; 58(1):75-8. PubMed ID: 140578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in bone mineral in experimentally induced rickets in the rat: electron microprobe and chemical studies.
    Dempster DW; Elder HY; Nicholson WA; Smith DA; Moss VA
    Calcif Tissue Int; 1980; 30(2):135-46. PubMed ID: 6769561
    [No Abstract]   [Full Text] [Related]  

  • 17. Study of bone mineralization at the microscopic level using an electron probe microanalyser.
    Wollast R; Burny F
    Calcif Tissue Res; 1971; 8(1):73-82. PubMed ID: 5135578
    [No Abstract]   [Full Text] [Related]  

  • 18. [Chemical composition of the mineral component of rabbit bones after 30 days of hypokinesia].
    Didenko IE; Volozhin AI
    Kosm Biol Aviakosm Med; 1981; 15(1):84-7. PubMed ID: 7218757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ancient Nubian human bone: a chemical and ultrastructural characterization including collagen.
    Race GJ; Fry EI; Matthews JL; Wagner MJ; Martin JH; Lynn JA
    Am J Phys Anthropol; 1968 Mar; 28(2):157-62. PubMed ID: 5672753
    [No Abstract]   [Full Text] [Related]  

  • 20. [Biophysical study on the effect of fluorine on calcified tissues].
    Bang S
    SSO Schweiz Monatsschr Zahnheilkd; 1976 Aug; 86(8):838-63. PubMed ID: 785593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.