These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34505592)

  • 1. Spontaneous flexoelectricity and band engineering in MS
    Dong J; Hu H; Li H; Ouyang G
    Phys Chem Chem Phys; 2021 Sep; 23(36):20574-20582. PubMed ID: 34505592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexoelectricity and Charge Separation in Carbon Nanotubes.
    Artyukhov VI; Gupta S; Kutana A; Yakobson BI
    Nano Lett; 2020 May; 20(5):3240-3246. PubMed ID: 32155086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexoelectricity in Monolayer Transition Metal Dichalcogenides.
    Shi W; Guo Y; Zhang Z; Guo W
    J Phys Chem Lett; 2018 Dec; 9(23):6841-6846. PubMed ID: 30449097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field.
    Lu N; Guo H; Li L; Dai J; Wang L; Mei WN; Wu X; Zeng XC
    Nanoscale; 2014 Mar; 6(5):2879-86. PubMed ID: 24473269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the indirect-direct band gap transition in the MoS
    Wu HH; Meng Q; Huang H; Liu CT; Wang XL
    Phys Chem Chem Phys; 2018 Jan; 20(5):3608-3613. PubMed ID: 29340382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Torsional strain engineering of transition metal dichalcogenide nanotubes: an
    Bhardwaj A; Sharma A; Suryanarayana P
    Nanotechnology; 2021 Sep; 32(47):. PubMed ID: 34348245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Half-metallic properties of 3d transition metal atom-intercalated graphene@MS
    Zhang X; Bao Z; Ye X; Xu W; Wang Q; Liu Y
    Nanoscale; 2017 Aug; 9(31):11231-11238. PubMed ID: 28752887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-stable small diameter hybrid transition metal dichalcogenide nanotubes X-M-Y (X, Y = S, Se, Te; M = Mo, W, Nb, Ta): a computational study.
    Zhao W; Li Y; Duan W; Ding F
    Nanoscale; 2015 Aug; 7(32):13586-90. PubMed ID: 26206165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Torsional moduli of transition metal dichalcogenide nanotubes from first principles.
    Bhardwaj A; Sharma A; Suryanarayana P
    Nanotechnology; 2021 Apr; 32(28):. PubMed ID: 33827066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-Principles Evaluation of the Morphology of WS
    Piskunov S; Lisovski O; Zhukovskii YF; D'yachkov PN; Evarestov RA; Kenmoe S; Spohr E
    ACS Omega; 2019 Jan; 4(1):1434-1442. PubMed ID: 31459410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic structure properties of transition metal dichalcogenide nanotubes: a DFT benchmark.
    de Alencar Rocha R; da Cunha WF; Ribeiro LA
    J Mol Model; 2019 Aug; 25(9):290. PubMed ID: 31473823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of flexoelectric effect on the FrĂ©edericksz transition in chiral nematic liquid crystals.
    Oskirko AD; Ul'yanov SV; Val'kov AY
    Phys Rev E; 2018 Jul; 98(1-1):012702. PubMed ID: 30110772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the Chiral Domains and Excitonic States in Individual WS
    Xia H; Chen X; Luo S; Qin F; Idelevich A; Ghosh S; Ideue T; Iwasa Y; Zak A; Tenne R; Chen Z; Liu WT; Wu S
    Nano Lett; 2021 Jun; 21(12):4937-4943. PubMed ID: 34114816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wrinkle facilitated hydrogen evolution reaction of vacancy-defected transition metal dichalcogenide monolayers.
    Pu M; Guo Y; Guo W
    Nanoscale; 2021 Dec; 13(48):20576-20582. PubMed ID: 34874043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Dimensional Ferroelasticity and Domain-Wall Flexoelectricity in HgX
    Ding X; Jia Y; Gou G
    J Phys Chem Lett; 2023 Jan; 14(2):420-429. PubMed ID: 36622322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural stability and intriguing electronic properties of two-dimensional transition metal dichalcogenide alloys.
    Yuan X; Yang M; Wang L; Li Y
    Phys Chem Chem Phys; 2017 May; 19(21):13846-13854. PubMed ID: 28513742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorting Transition-Metal Dichalcogenide Nanotubes by Centrifugation.
    Yomogida Y; Liu Z; Ichinose Y; Yanagi K
    ACS Omega; 2018 Aug; 3(8):8932-8936. PubMed ID: 31459025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiconducting cyanide-transition-metal nanotubes.
    Mo Y; Kaxiras E
    Small; 2007 Jul; 3(7):1253-8. PubMed ID: 17506041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures.
    Wei W; Dai Y; Huang B
    Phys Chem Chem Phys; 2016 Jun; 18(23):15632-8. PubMed ID: 27220413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TiS2 and ZrS2 single- and double-wall nanotubes: first-principles study.
    Bandura AV; Evarestov RA
    J Comput Chem; 2014 Feb; 35(5):395-405. PubMed ID: 24327400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.