These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34505753)

  • 1. A Phase Inversion-Based Microfluidic Fabrication of Helical Microfibers towards Versatile Artificial Abdominal Skin.
    Liu JD; Du XY; Chen S
    Angew Chem Int Ed Engl; 2021 Nov; 60(47):25089-25096. PubMed ID: 34505753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Blood-Vessel-on-a-Chip Applications.
    Jia L; Han F; Yang H; Turnbull G; Wang J; Clarke J; Shu W; Guo M; Li B
    Adv Healthc Mater; 2019 Jul; 8(13):e1900435. PubMed ID: 31081247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput and Controllable Fabrication of Helical Microfibers by Hydrodynamically Focusing Flow.
    Ma W; Liu D; Ling S; Zhang J; Chen Z; Lu Y; Xu J
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):59392-59399. PubMed ID: 34851622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of capillary microfluidics for spinning cell-laden microfibers.
    Yu Y; Shang L; Guo J; Wang J; Zhao Y
    Nat Protoc; 2018 Nov; 13(11):2557-2579. PubMed ID: 30353174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic-directed biomimetic
    Guo Y; Yan J; Xin JH; Wang L; Yu X; Fan L; Liu P; Yu H
    Lab Chip; 2021 Jun; 21(13):2594-2604. PubMed ID: 34008681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable Knot Microfibers from Piezoelectric Microfluidics.
    Yang C; Yu Y; Wang X; Shang L; Zhao Y
    Small; 2022 Feb; 18(5):e2104309. PubMed ID: 34825481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired Helical Microfibers from Microfluidics.
    Yu Y; Fu F; Shang L; Cheng Y; Gu Z; Zhao Y
    Adv Mater; 2017 May; 29(18):. PubMed ID: 28266759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfiber Fabricated via Microfluidic Spinning toward Tissue Engineering Applications.
    Tian L; Ma J; Li W; Zhang X; Gao X
    Macromol Biosci; 2023 Mar; 23(3):e2200429. PubMed ID: 36543751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple Fabrication of Multicomponent Heterogeneous Fibers for Cell Co-Culture via Microfluidic Spinning.
    Yao K; Li W; Li K; Wu Q; Gu Y; Zhao L; Zhang Y; Gao X
    Macromol Biosci; 2020 Mar; 20(3):e1900395. PubMed ID: 32141708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple Spinning of Heterogeneous Hollow Microfibers on Chip.
    Yu Y; Wei W; Wang Y; Xu C; Guo Y; Qin J
    Adv Mater; 2016 Aug; 28(31):6649-55. PubMed ID: 27185309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATPSpin: A Single Microfluidic Platform that Produces Diversified ATPS-Alginate Microfibers.
    Ghasemzaie N; Jeyhani M; Joshi K; Lee WL; Tsai SSH
    ACS Biomater Sci Eng; 2024 Jun; 10(6):3896-3908. PubMed ID: 38748191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired Polymeric Helical and Superhelical Microfibers via Microfluidic Spinning.
    Yang H; Guo M
    Macromol Rapid Commun; 2019 Jun; 40(12):e1900111. PubMed ID: 30969013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Access to Wearable Device via Microfluidic Spinning of Robust and Aligned Fluorescent Microfibers.
    Cui T; Zhu Z; Cheng R; Tong YL; Peng G; Wang CF; Chen S
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30785-30793. PubMed ID: 30113800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biopolymer-Assembled Porous Hydrogel Microfibers from Microfluidic Spinning for Wound Healing.
    Wang Y; Guo J; Luo Z; Shen Y; Wang J; Yu Y; Zhao Y
    Adv Healthc Mater; 2024 Jan; 13(3):e2302170. PubMed ID: 37921989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale Fabrication of Robust Artificial Skins from a Biodegradable Sealant-Loaded Nanofiber Scaffold to Skin Tissue via Microfluidic Blow-Spinning.
    Cui T; Yu J; Li Q; Wang CF; Chen S; Li W; Wang G
    Adv Mater; 2020 Aug; 32(32):e2000982. PubMed ID: 32627895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive collagen crosslinking comparison of microfluidic wet-extruded microfibers for bioactive surgical suture development.
    Dasgupta A; Sori N; Petrova S; Maghdouri-White Y; Thayer N; Kemper N; Polk S; Leathers D; Coughenour K; Dascoli J; Palikonda R; Donahue C; Bulysheva AA; Francis MP
    Acta Biomater; 2021 Jul; 128():186-200. PubMed ID: 33878472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastrong and flame-retardant microfibers via microfluidic wet spinning of phosphorylated cellulose nanofibrils.
    Ren N; Chen S; Cui M; Huang R; Qi W; He Z; Su R
    Carbohydr Polym; 2022 Nov; 296():119945. PubMed ID: 36087993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired Microfibers with Embedded Perfusable Helical Channels.
    Xu P; Xie R; Liu Y; Luo G; Ding M; Liang Q
    Adv Mater; 2017 Sep; 29(34):. PubMed ID: 28639435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic synthesis of pure chitosan microfibers for bio-artificial liver chip.
    Lee KH; Shin SJ; Kim CB; Kim JK; Cho YW; Chung BG; Lee SH
    Lab Chip; 2010 May; 10(10):1328-34. PubMed ID: 20445889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Assembly of Cellulose Microfibers into Translucent and Flexible Microfluidic Paper-Based Analytical Devices via Wettability Patterning.
    Ma P; Wang S; Wang J; Wang Y; Dong Y; Li S; Su H; Chen P; Feng X; Li Y; Du W; Liu BF
    Anal Chem; 2022 Oct; 94(39):13332-13341. PubMed ID: 36121740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.