BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34505776)

  • 1. Universal Zigzag Edge Reconstruction of an α-Phase Puckered Monolayer and Its Resulting Robust Spatial Charge Separation.
    Zhang Y; Zhao Y; Bai Y; Gao J; Zhao J; Zhang YW
    Nano Lett; 2021 Oct; 21(19):8095-8102. PubMed ID: 34505776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The quantum confinement effects on the electronic properties of monolayer GeS nanoribbon with tube-edged reconstruction.
    Kong W; Zhang Y; Jiang X; Su Y; Liu H; Gao J
    Nanotechnology; 2022 May; ():. PubMed ID: 35584618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust charge spatial separation and linearly tunable band gap of low-energy tube-edge phosphorene nanoribbon.
    Xia M; Liu H; Wang L; Li S; Gao J; Su Y; Zhao J
    Nanoscale Adv; 2021 Jul; 3(15):4416-4423. PubMed ID: 36133464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Edge reconstruction effect in pristine and H-passivated zigzag silicon carbide nanoribbons.
    Lou P
    Phys Chem Chem Phys; 2011 Oct; 13(38):17194-204. PubMed ID: 21879055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybridization induced metallic and magnetic edge states in noble transition-metal-dichalcogenides of PtX
    Liu S; Liu Z
    Phys Chem Chem Phys; 2018 Aug; 20(33):21441-21446. PubMed ID: 30087962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-passivated edges of ZnO nanoribbons: a global search.
    Ding LP; Tang Y; Shao P; Zhang H; Guo YJ; Zeng JH; Zhao YR
    Nanoscale; 2022 Oct; 14(41):15468-15474. PubMed ID: 36226513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomically Sharp, Closed Bilayer Phosphorene Edges by Self-Passivation.
    Lee S; Lee Y; Ding LP; Lee K; Ding F; Kim K
    ACS Nano; 2022 Aug; 16(8):12822-12830. PubMed ID: 35904253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Half metallicity in BC2)N nanoribbons: stability, electronic structures, and magnetism.
    Lai L; Lu J
    Nanoscale; 2011 Jun; 3(6):2583-8. PubMed ID: 21552611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiconducting edges and flake-shape evolution of monolayer GaSe: role of edge reconstructions.
    Wang N; Cao D; Wang J; Liang P; Chen X; Shu H
    Nanoscale; 2018 Jul; 10(25):12133-12140. PubMed ID: 29915839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure and elastic properties of phosphorene edges.
    Sorkin V; Zhang YW
    Nanotechnology; 2015 Jun; 26(23):235707. PubMed ID: 25994387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotube-terminated zigzag edges of phosphorene formed by self-rolling reconstruction.
    Gao J; Liu X; Zhang G; Zhang YW
    Nanoscale; 2016 Oct; 8(41):17940-17946. PubMed ID: 27725985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum manifestations in electronic properties of bilayer phosphorene nanoribbons.
    Zhang J; Li SQ; Liu H; Li M; Gao J
    Phys Chem Chem Phys; 2023 Jan; 25(2):1214-1219. PubMed ID: 36524708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The unique carrier mobility of monolayer Janus MoSSe nanoribbons: a first-principles study.
    Yin WJ; Liu Y; Wen B; Li XB; Chai YF; Wei XL; Ma S; Teobaldi G
    Dalton Trans; 2021 Jul; 50(29):10252-10260. PubMed ID: 34251008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced linear dichroism of flattened-edge black phosphorus nanoribbons.
    Seixas L
    J Phys Condens Matter; 2022 Apr; 34(22):. PubMed ID: 35276682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Edge Reconstruction in the Synthesis of Few-Layer Black Phosphorene.
    Ding LP; Guo ZA; Qiao FY; Guo YJ; Shao P; Ding F
    J Phys Chem Lett; 2024 Feb; 15(7):1999-2005. PubMed ID: 38349331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies.
    Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y
    ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eliminating Edge Electronic and Phonon States of Phosphorene Nanoribbon by Unique Edge Reconstruction.
    Li SQ; Liu X; Wang X; Liu H; Zhang G; Zhao J; Gao J
    Small; 2022 Jan; 18(2):e2105130. PubMed ID: 34862720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable gap in stable arsenene nanoribbons opens the door to electronic applications.
    García-Fuente A; Carrete J; Vega A; Gallego LJ
    RSC Adv; 2019 Apr; 9(21):11818-11823. PubMed ID: 35517025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size Limiting Elemental Ferroelectricity in Bi Nanoribbons: Observation, Mechanism, and Opportunity.
    Hong Y; Deng J; Ding X; Sun J; Liu JZ
    J Phys Chem Lett; 2023 Apr; 14(13):3160-3167. PubMed ID: 36961418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.