These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 34505824)
1. Enhancing Ristomycin A Production by Overexpression of ParB-Like StrR Family Regulators Controlling the Biosynthesis Genes. Liu K; Hu XR; Zhao LX; Wang Y; Deng Z; Tao M Appl Environ Microbiol; 2021 Sep; 87(19):e0106621. PubMed ID: 34505824 [No Abstract] [Full Text] [Related]
2. The border sequence of the balhimycin biosynthesis gene cluster from Amycolatopsis balhimycina contains bbr, encoding a StrR-like pathway-specific regulator. Shawky RM; Puk O; Wietzorrek A; Pelzer S; Takano E; Wohlleben W; Stegmann E J Mol Microbiol Biotechnol; 2007; 13(1-3):76-88. PubMed ID: 17693715 [TBL] [Abstract][Full Text] [Related]
3. Overproduction of Ristomycin A by activation of a silent gene cluster in Amycolatopsis japonicum MG417-CF17. Spohn M; Kirchner N; Kulik A; Jochim A; Wolf F; Muenzer P; Borst O; Gross H; Wohlleben W; Stegmann E Antimicrob Agents Chemother; 2014 Oct; 58(10):6185-96. PubMed ID: 25114137 [TBL] [Abstract][Full Text] [Related]
4. Regulation of teicoplanin biosynthesis: refining the roles of tei cluster-situated regulatory genes. Yushchuk O; Horbal L; Ostash B; Marinelli F; Wohlleben W; Stegmann E; Fedorenko V Appl Microbiol Biotechnol; 2019 May; 103(10):4089-4102. PubMed ID: 30937499 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of the shikimate pathway in Amycolatopsis strains for optimized glycopeptide antibiotic production. Goldfinger V; Spohn M; Rodler JP; Sigle M; Kulik A; Cryle MJ; Rapp J; Link H; Wohlleben W; Stegmann E Metab Eng; 2023 Jul; 78():84-92. PubMed ID: 37244369 [TBL] [Abstract][Full Text] [Related]
6. NovG, a DNA-binding protein acting as a positive regulator of novobiocin biosynthesis. Eustáquio AS; Li SM; Heide L Microbiology (Reading); 2005 Jun; 151(Pt 6):1949-1961. PubMed ID: 15942002 [TBL] [Abstract][Full Text] [Related]
7. Rational construction of a high-quality and high-efficiency biosynthetic system and fermentation optimization for A82846B based on combinatorial strategies in Amycolatopsis orientalis. Zhao X; Zhu C; Gao W; Xie H; Lyu Z; Zhao Q; Li Y Microb Cell Fact; 2024 Jun; 23(1):186. PubMed ID: 38943174 [TBL] [Abstract][Full Text] [Related]
8. Heterologous expression of the atypical tetracycline chelocardin reveals the full set of genes required for its biosynthesis. Lukežič T; Pikl Š; Zaburannyi N; Remškar M; Petković H; Müller R Microb Cell Fact; 2020 Dec; 19(1):230. PubMed ID: 33341113 [TBL] [Abstract][Full Text] [Related]
9. Phosphate-controlled regulator for the biosynthesis of the dalbavancin precursor A40926. Alduina R; Lo Piccolo L; D'Alia D; Ferraro C; Gunnarsson N; Donadio S; Puglia AM J Bacteriol; 2007 Nov; 189(22):8120-9. PubMed ID: 17873036 [TBL] [Abstract][Full Text] [Related]
10. The Impact of Heterologous Regulatory Genes from Lipodepsipeptide Biosynthetic Gene Clusters on the Production of Teicoplanin and A40926. Zhukrovska K; Binda E; Fedorenko V; Marinelli F; Yushchuk O Antibiotics (Basel); 2024 Jan; 13(2):. PubMed ID: 38391501 [TBL] [Abstract][Full Text] [Related]
11. Comparative genomics and transcriptomics analyses provide insights into the high yield and regulatory mechanism of Norvancomycin biosynthesis in Amycolatopsis orientalis NCPC 2-48. Li X; Zhang C; Zhao Y; Lei X; Jiang Z; Zhang X; Zheng Z; Si S; Wang L; Hong B Microb Cell Fact; 2021 Feb; 20(1):28. PubMed ID: 33531006 [TBL] [Abstract][Full Text] [Related]
12. Strategy for Producing the High-Quality Glycopeptide Antibiotic A82846B in Qian H; Wei W; Chen XA; Mo XT; Ge M; Zhao QW; Li YQ ACS Synth Biol; 2021 Nov; 10(11):3009-3016. PubMed ID: 34628852 [TBL] [Abstract][Full Text] [Related]
13. RifZ (AMED_0655) Is a Pathway-Specific Regulator for Rifamycin Biosynthesis in Amycolatopsis mediterranei. Li C; Liu X; Lei C; Yan H; Shao Z; Wang Y; Zhao G; Wang J; Ding X Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159794 [TBL] [Abstract][Full Text] [Related]
14. Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster. Thykaer J; Nielsen J; Wohlleben W; Weber T; Gutknecht M; Lantz AE; Stegmann E Metab Eng; 2010 Sep; 12(5):455-61. PubMed ID: 20570618 [TBL] [Abstract][Full Text] [Related]
17. Dependence on reporter gene of apparent activity in gene fusions of a Streptomyces griseus streptomycin biosynthesis promoter. Lindley HK; Deeble VJ; Peschke U; O'Neill M; Baumberg S; Cove J Can J Microbiol; 1995; 41(4-5):407-17. PubMed ID: 8590416 [TBL] [Abstract][Full Text] [Related]
18. The str gene cluster for the biosynthesis of 5'-hydroxystreptomycin in Streptomyces glaucescens GLA.0 (ETH 22794): new operons and evidence for pathway-specific regulation by StrR. Beyer S; Distler J; Piepersberg W Mol Gen Genet; 1996 Apr; 250(6):775-84. PubMed ID: 8628239 [TBL] [Abstract][Full Text] [Related]
19. Detection of an A-factor-responsive protein that binds to the upstream activation sequence of strR, a regulatory gene for streptomycin biosynthesis in Streptomyces griseus. Vujaklija D; Horinouchi S; Beppu T J Bacteriol; 1993 May; 175(9):2652-61. PubMed ID: 8478330 [TBL] [Abstract][Full Text] [Related]
20. Conditionally positive effect of the TetR-family transcriptional regulator AtrA on streptomycin production by Streptomyces griseus. Hirano S; Tanaka K; Ohnishi Y; Horinouchi S Microbiology (Reading); 2008 Mar; 154(Pt 3):905-914. PubMed ID: 18310036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]