These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 34506235)
1. Biomechanical Response After Corneal Cross-linking With Riboflavin Dissolved in Dextran Solution Versus Hydroxypropyl Methylcellulose. Fischinger I; Seiler TG; Wendelstein J; Tetz K; Fuchs B; Bolz M J Refract Surg; 2021 Sep; 37(9):631-635. PubMed ID: 34506235 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Corneal Riboflavin Gradients Using Dextran and HPMC Solutions. Ehmke T; Seiler TG; Fischinger I; Ripken T; Heisterkamp A; Frueh BE J Refract Surg; 2016 Dec; 32(12):798-802. PubMed ID: 27930789 [TBL] [Abstract][Full Text] [Related]
3. Analysis of Biomechanical Response After Corneal Crosslinking with Different Fluence Levels in Porcine Corneas. Fischinger I; Reifeltshammer SA; Seiler TG; Nambiar MH; Komninou MA; Büchler P; Wendelstein J; Langenbucher A; Bolz M Curr Eye Res; 2023 Aug; 48(8):719-723. PubMed ID: 37144469 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical efficacy of corneal cross-linking using hypoosmolar riboflavin solution. Wollensak G; Spörl E Eur J Ophthalmol; 2019 Sep; 29(5):474-481. PubMed ID: 30255714 [TBL] [Abstract][Full Text] [Related]
5. Repeated application of riboflavin during corneal cross-linking does not improve the biomechanical stiffening effect ex vivo. Abdshahzadeh H; Abrishamchi R; Aydemir ME; Hafezi N; Hillen M; Torres-Netto EA; Lu NJ; Hafezi F Exp Eye Res; 2022 Nov; 224():109267. PubMed ID: 36167218 [TBL] [Abstract][Full Text] [Related]
6. Oxygen Diffusion May Limit the Biomechanical Effectiveness of Iontophoresis-Assisted Transepithelial Corneal Cross-linking. Torres-Netto EA; Kling S; Hafezi N; Vinciguerra P; Randleman JB; Hafezi F J Refract Surg; 2018 Nov; 34(11):768-774. PubMed ID: 30428097 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical efficacy of contact lens-assisted collagen cross-linking in porcine eyes. Wollensak G; Spörl E; Herbst H Acta Ophthalmol; 2019 Feb; 97(1):e84-e90. PubMed ID: 30421526 [TBL] [Abstract][Full Text] [Related]
8. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. Wollensak G; Spoerl E; Seiler T J Cataract Refract Surg; 2003 Sep; 29(9):1780-5. PubMed ID: 14522301 [TBL] [Abstract][Full Text] [Related]
9. Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Hammer A; Richoz O; Arba Mosquera S; Tabibian D; Hoogewoud F; Hafezi F Invest Ophthalmol Vis Sci; 2014 May; 55(5):2881-4. PubMed ID: 24677109 [TBL] [Abstract][Full Text] [Related]
10. The Relationship Between Mechanical Properties, Ultrastructural Changes, and Intrafibrillar Bond Formation in Corneal UVA/Riboflavin Cross-linking Treatment for Keratoconus. Chang SH; Mohammadvali A; Chen KJ; Ji YR; Young TH; Wang TJ; Willoughby CE; Hamill KJ; Elsheikh A J Refract Surg; 2018 Apr; 34(4):264-272. PubMed ID: 29634842 [TBL] [Abstract][Full Text] [Related]
11. Isotonic riboflavin and HPMC with accelerated cross-linking protocol. Jain V; Gazali Z; Bidayi R Cornea; 2014 Sep; 33(9):910-3. PubMed ID: 25014154 [TBL] [Abstract][Full Text] [Related]
12. An Algorithm to Predict the Biomechanical Stiffening Effect in Corneal Cross-linking. Kling S; Hafezi F J Refract Surg; 2017 Feb; 33(2):128-136. PubMed ID: 28192592 [TBL] [Abstract][Full Text] [Related]
13. Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments. Kling S; Remon L; Pérez-Escudero A; Merayo-Lloves J; Marcos S Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):3961-8. PubMed ID: 20335615 [TBL] [Abstract][Full Text] [Related]
14. Intraoperative corneal thickness monitoring during corneal collagen cross-linking with isotonic riboflavin solution with and without dextran. Oltulu R; Şatirtav G; Donbaloğlu M; Kerimoğlu H; Özkağnici A; Karaibrahimoğlu A Cornea; 2014 Nov; 33(11):1164-7. PubMed ID: 25211359 [TBL] [Abstract][Full Text] [Related]
15. Effects of Thickness on Corneal Biomechanical Properties Using Optical Coherence Elastography. Vantipalli S; Li J; Singh M; Aglyamov SR; Larin KV; Twa MD Optom Vis Sci; 2018 Apr; 95(4):299-308. PubMed ID: 29561496 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical property analysis after corneal collagen cross-linking in relation to ultraviolet A irradiation time. Lanchares E; del Buey MA; Cristóbal JA; Lavilla L; Calvo B Graefes Arch Clin Exp Ophthalmol; 2011 Aug; 249(8):1223-7. PubMed ID: 21494876 [TBL] [Abstract][Full Text] [Related]
17. Demarcation line depth after contact lens-assisted corneal crosslinking for progressive keratoconus: Comparison of dextran-based and hydroxypropyl methylcellulose-based riboflavin solutions. Malhotra C; Jain AK; Gupta A; Ram J; Ramatchandirane B; Dhingra D; Sachdeva K; Kumar A J Cataract Refract Surg; 2017 Oct; 43(10):1263-1270. PubMed ID: 29120712 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical efficacy of collagen crosslinking in porcine cornea using a femtosecond laser pocket. Wollensak G; Hammer CM; Spörl E; Klenke J; Skerl K; Zhang Y; Sel S Cornea; 2014 Mar; 33(3):300-5. PubMed ID: 24457453 [TBL] [Abstract][Full Text] [Related]
19. Superior outcome of corneal collagen cross-linking using riboflavin with methylcellulose than riboflavin with dextran as the main supplement. Thorsrud A; Hagem AM; Sandvik GF; Drolsum L Acta Ophthalmol; 2019 Jun; 97(4):415-421. PubMed ID: 30284383 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical stiffening: Slow low-irradiance corneal crosslinking versus the standard Dresden protocol. Kling S; Hafezi F J Cataract Refract Surg; 2017 Jul; 43(7):975-979. PubMed ID: 28823446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]