These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34506287)

  • 1. EEGFuseNet: Hybrid Unsupervised Deep Feature Characterization and Fusion for High-Dimensional EEG With an Application to Emotion Recognition.
    Liang Z; Zhou R; Zhang L; Li L; Huang G; Zhang Z; Ishii S
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1913-1925. PubMed ID: 34506287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subject-independent EEG emotion recognition with hybrid spatio-temporal GRU-Conv architecture.
    Xu G; Guo W; Wang Y
    Med Biol Eng Comput; 2023 Jan; 61(1):61-73. PubMed ID: 36322243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fusion Graph Representation of EEG for Emotion Recognition.
    Li M; Qiu M; Kong W; Zhu L; Ding Y
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emotion recognition using spatial-temporal EEG features through convolutional graph attention network.
    Li Z; Zhang G; Wang L; Wei J; Dang J
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36720164
    [No Abstract]   [Full Text] [Related]  

  • 5. Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition.
    Xing M; Hu S; Wei B; Lv Z
    J Neurosci Methods; 2022 Jul; 376():109624. PubMed ID: 35588948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-supervised EEG emotion recognition model based on enhanced graph fusion and GCN.
    Li G; Chen N; Jin J
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35378516
    [No Abstract]   [Full Text] [Related]  

  • 7. Emotion Recognition Based on EEG Using Generative Adversarial Nets and Convolutional Neural Network.
    Pan B; Zheng W
    Comput Math Methods Med; 2021; 2021():2520394. PubMed ID: 34671415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network.
    Cho J; Hwang H
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition.
    Cimtay Y; Ekmekcioglu E
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG-Based Multi-Modal Emotion Recognition using Bag of Deep Features: An Optimal Feature Selection Approach.
    Asghar MA; Khan MJ; Fawad ; Amin Y; Rizwan M; Rahman M; Badnava S; Mirjavadi SS
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-scale 3D-CRU for EEG emotion recognition.
    Dong H; Zhou J; Fan C; Zheng W; Tao L; Kwan HK
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38670076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning.
    Dar MN; Akram MU; Yuvaraj R; Gul Khawaja S; Murugappan M
    Comput Biol Med; 2022 May; 144():105327. PubMed ID: 35303579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FC-TFS-CGRU: A Temporal-Frequency-Spatial Electroencephalography Emotion Recognition Model Based on Functional Connectivity and a Convolutional Gated Recurrent Unit Hybrid Architecture.
    Wu X; Zhang Y; Li J; Yang H; Wu X
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution.
    Alazrai R; Homoud R; Alwanni H; Daoud MI
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TC-Net: A Transformer Capsule Network for EEG-based emotion recognition.
    Wei Y; Liu Y; Li C; Cheng J; Song R; Chen X
    Comput Biol Med; 2023 Jan; 152():106463. PubMed ID: 36571938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression-EEG Bimodal Fusion Emotion Recognition Method Based on Deep Learning.
    Lu Y; Zhang H; Shi L; Yang F; Li J
    Comput Math Methods Med; 2021; 2021():9940148. PubMed ID: 34122621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FCAN-XGBoost: A Novel Hybrid Model for EEG Emotion Recognition.
    Zong J; Xiong X; Zhou J; Ji Y; Zhou D; Zhang Q
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating 3D Convolutional Neural Network with Channel Bottleneck Module for EEG-Based Emotion Recognition.
    Kim S; Kim TS; Lee WH
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial-temporal network for fine-grained-level emotion EEG recognition.
    Ji Y; Li F; Fu B; Li Y; Zhou Y; Niu Y; Zhang L; Chen Y; Shi G
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35523129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpretable Cross-Subject EEG-Based Emotion Recognition Using Channel-Wise Features.
    Jin L; Kim EY
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.