These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 34506602)
1. Deep generative models for automated muscle segmentation in computed tomography scanning. Nishiyama D; Iwasaki H; Taniguchi T; Fukui D; Yamanaka M; Harada T; Yamada H PLoS One; 2021; 16(9):e0257371. PubMed ID: 34506602 [TBL] [Abstract][Full Text] [Related]
2. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
3. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT. Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071 [TBL] [Abstract][Full Text] [Related]
4. Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation. Cayot B; Milot L; Nempont O; Vlachomitrou AS; Langlois-Jacques C; Dumortier J; Boillot O; Arnaud K; Barten TRM; Drenth JPH; Valette PJ Eur Radiol; 2022 Jul; 32(7):4780-4790. PubMed ID: 35142898 [TBL] [Abstract][Full Text] [Related]
5. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105 [TBL] [Abstract][Full Text] [Related]
6. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images. Tong N; Gou S; Yang S; Cao M; Sheng K Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188 [TBL] [Abstract][Full Text] [Related]
7. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs. Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques. Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090 [TBL] [Abstract][Full Text] [Related]
9. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer. Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning Network for Segmentation of the Prostate Gland With Median Lobe Enlargement in T2-weighted MR Images: Comparison With Manual Segmentation Method. Salvaggio G; Comelli A; Portoghese M; Cutaia G; Cannella R; Vernuccio F; Stefano A; Dispensa N; La Tona G; Salvaggio L; Calamia M; Gagliardo C; Lagalla R; Midiri M Curr Probl Diagn Radiol; 2022; 51(3):328-333. PubMed ID: 34315623 [TBL] [Abstract][Full Text] [Related]
11. [Study on the accuracy of automatic segmentation of knee CT images based on deep learning]. Song P; Fan Z; Zhi X; Cao Z; Min S; Liu X; Zhang Y; Kong X; Chai W Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 May; 36(5):534-539. PubMed ID: 35570625 [TBL] [Abstract][Full Text] [Related]
12. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs. Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675 [TBL] [Abstract][Full Text] [Related]
13. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT. Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026 [TBL] [Abstract][Full Text] [Related]
14. Fast interactive medical image segmentation with weakly supervised deep learning method. Girum KB; Créhange G; Hussain R; Lalande A Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1437-1444. PubMed ID: 32653985 [TBL] [Abstract][Full Text] [Related]
15. nnU-Net-Based Pancreas Segmentation and Volume Measurement on CT Imaging in Patients with Pancreatic Cancer. Yang E; Kim JH; Min JH; Jeong WK; Hwang JA; Lee JH; Shin J; Kim H; Lee SE; Baek SY Acad Radiol; 2024 Jul; 31(7):2784-2794. PubMed ID: 38350812 [TBL] [Abstract][Full Text] [Related]
16. Automatic MRI-based Three-dimensional Models of Hip Cartilage Provide Improved Morphologic and Biochemical Analysis. Schmaranzer F; Helfenstein R; Zeng G; Lerch TD; Novais EN; Wylie JD; Kim YJ; Siebenrock KA; Tannast M; Zheng G Clin Orthop Relat Res; 2019 May; 477(5):1036-1052. PubMed ID: 30998632 [TBL] [Abstract][Full Text] [Related]
17. The auto segmentation for cardiac structures using a dual-input deep learning network based on vision saliency and transformer. Wang J; Wang S; Liang W; Zhang N; Zhang Y J Appl Clin Med Phys; 2022 May; 23(5):e13597. PubMed ID: 35363415 [TBL] [Abstract][Full Text] [Related]
18. Accurate colorectal tumor segmentation for CT scans based on the label assignment generative adversarial network. Liu X; Guo S; Zhang H; He K; Mu S; Guo Y; Li X Med Phys; 2019 Aug; 46(8):3532-3542. PubMed ID: 31087327 [TBL] [Abstract][Full Text] [Related]
19. Development and Validation of a Deep Learning System for Segmentation of Abdominal Muscle and Fat on Computed Tomography. Park HJ; Shin Y; Park J; Kim H; Lee IS; Seo DW; Huh J; Lee TY; Park T; Lee J; Kim KW Korean J Radiol; 2020 Jan; 21(1):88-100. PubMed ID: 31920032 [TBL] [Abstract][Full Text] [Related]
20. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sandfort V; Yan K; Pickhardt PJ; Summers RM Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]