BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 34506835)

  • 1. Reactive oxygen species: Role in carcinogenesis, cancer cell signaling and tumor progression.
    Sarmiento-Salinas FL; Perez-Gonzalez A; Acosta-Casique A; Ix-Ballote A; Diaz A; Treviño S; Rosas-Murrieta NH; Millán-Perez-Peña L; Maycotte P
    Life Sci; 2021 Nov; 284():119942. PubMed ID: 34506835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen species in colorectal cancer: The therapeutic impact and its potential roles in tumor progression via perturbation of cellular and physiological dysregulated pathways.
    Moradi-Marjaneh R; Hassanian SM; Mehramiz M; Rezayi M; Ferns GA; Khazaei M; Avan A
    J Cell Physiol; 2019 Jul; 234(7):10072-10079. PubMed ID: 30515827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The multifaceted role of reactive oxygen species in tumorigenesis.
    Kirtonia A; Sethi G; Garg M
    Cell Mol Life Sci; 2020 Nov; 77(22):4459-4483. PubMed ID: 32358622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements.
    Aggarwal V; Tuli HS; Varol A; Thakral F; Yerer MB; Sak K; Varol M; Jain A; Khan MA; Sethi G
    Biomolecules; 2019 Nov; 9(11):. PubMed ID: 31766246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Complex Interplay between Antioxidants and ROS in Cancer.
    Harris IS; DeNicola GM
    Trends Cell Biol; 2020 Jun; 30(6):440-451. PubMed ID: 32303435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen species in tumor progression.
    Storz P
    Front Biosci; 2005 May; 10():1881-96. PubMed ID: 15769673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Yin-Yang Regulation of Reactive Oxygen Species and MicroRNAs in Cancer.
    R Babu K; Tay Y
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31717786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Mechanisms of Nickel-Induced Carcinogenesis.
    Son YO
    Endocr Metab Immune Disord Drug Targets; 2020; 20(7):1015-1023. PubMed ID: 31774048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Interplay of Reactive Oxygen Species, Hypoxia, Inflammation, and Sirtuins in Cancer Initiation and Progression.
    Tafani M; Sansone L; Limana F; Arcangeli T; De Santis E; Polese M; Fini M; Russo MA
    Oxid Med Cell Longev; 2016; 2016():3907147. PubMed ID: 26798421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of RONS and eIFs in Cancer Progression.
    Salaheldin YA; Mahmoud SSM; Ngowi EE; Gbordzor VA; Li T; Wu DD; Ji XY
    Oxid Med Cell Longev; 2021; 2021():5522054. PubMed ID: 34285764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual roles of glutathione S-transferase mu 1 in the development and metastasis of hepatocellular carcinoma.
    Lu Y; Zhou J; Zhang J; Wang Z; Yu Y; Miao M; Yao Q
    Biomed Pharmacother; 2019 Dec; 120():109532. PubMed ID: 31605953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive Oxygen and Nitrogen Species in Carcinogenesis: Implications of Oxidative Stress on the Progression and Development of Several Cancer Types.
    Kruk J; Aboul-Enein HY
    Mini Rev Med Chem; 2017; 17(11):904-919. PubMed ID: 28245782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay Between Mitochondrial Peroxiredoxins and ROS in Cancer Development and Progression.
    Ismail T; Kim Y; Lee H; Lee DS; Lee HS
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31500275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crosstalk of MicroRNAs and Oxidative Stress in the Pathogenesis of Cancer.
    Lu C; Zhou D; Wang Q; Liu W; Yu F; Wu F; Chen C
    Oxid Med Cell Longev; 2020; 2020():2415324. PubMed ID: 32411322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pro- and antitumor effects of mitochondrial reactive oxygen species.
    Payen VL; Zampieri LX; Porporato PE; Sonveaux P
    Cancer Metastasis Rev; 2019 Jun; 38(1-2):189-203. PubMed ID: 30820778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative Stress and Cancer Development: Are Noncoding RNAs the Missing Links?
    D'Souza LC; Mishra S; Chakraborty A; Shekher A; Sharma A; Gupta SC
    Antioxid Redox Signal; 2020 Dec; 33(17):1209-1229. PubMed ID: 31891666
    [No Abstract]   [Full Text] [Related]  

  • 17. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis.
    Tretter L; Patocs A; Chinopoulos C
    Biochim Biophys Acta; 2016 Aug; 1857(8):1086-1101. PubMed ID: 26971832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive Oxygen and Nitrogen Species-Induced Protein Modifications: Implication in Carcinogenesis and Anticancer Therapy.
    Moldogazieva NT; Lutsenko SV; Terentiev AA
    Cancer Res; 2018 Nov; 78(21):6040-6047. PubMed ID: 30327380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estrogen potentiates reactive oxygen species (ROS) tolerance to initiate carcinogenesis and promote cancer malignant transformation.
    Tian H; Gao Z; Wang G; Li H; Zheng J
    Tumour Biol; 2016 Jan; 37(1):141-50. PubMed ID: 26566628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sirtuin 3: A Janus face in cancer (Review).
    Xiong Y; Wang M; Zhao J; Han Y; Jia L
    Int J Oncol; 2016 Dec; 49(6):2227-2235. PubMed ID: 27840909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.