These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34507098)

  • 1. MRI magnetic compatible electrical neural interface: From materials to application.
    Zhang Y; Le S; Li H; Ji B; Wang MH; Tao J; Liang JQ; Zhang XY; Kang XY
    Biosens Bioelectron; 2021 Dec; 194():113592. PubMed ID: 34507098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Composite Gold-Aluminum Electrode with Application to Neural Recording and Stimulation in Ultrahigh Field Magnetic Resonance Imaging Scanners.
    Cruttenden CE; Ahmadi M; Zhang Y; Zhu XH; Chen W; Rajamani R
    Ann Biomed Eng; 2021 Sep; 49(9):2337-2348. PubMed ID: 33884539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft and MRI Compatible Neural Electrodes from Carbon Nanotube Fibers.
    Lu L; Fu X; Liew Y; Zhang Y; Zhao S; Xu Z; Zhao J; Li D; Li Q; Stanley GB; Duan X
    Nano Lett; 2019 Mar; 19(3):1577-1586. PubMed ID: 30798604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformable Hybrid Systems for Implantable Bioelectronic Interfaces.
    Fallegger F; Schiavone G; Lacour SP
    Adv Mater; 2020 Apr; 32(15):e1903904. PubMed ID: 31608508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subdural neural interfaces for long-term electrical recording, optical microscopy and magnetic resonance imaging.
    Wang X; Wang M; Sheng H; Zhu L; Zhu J; Zhang H; Liu Y; Zhan L; Wang X; Zhang J; Wu X; Suo Z; Xi W; Wang H
    Biomaterials; 2022 Feb; 281():121352. PubMed ID: 34995902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible MRI Compatible Brain Probes.
    Ahmadi M; Cruttenden C; Zhu XH; Chen W; Rajamani R
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4579-4582. PubMed ID: 30441371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon Carbide and MRI: Towards Developing a MRI Safe Neural Interface.
    Beygi M; Dominguez-Viqueira W; Feng C; Mumcu G; Frewin CL; La Via F; Saddow SE
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33530350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.
    Zhang J; Liu X; Xu W; Luo W; Li M; Chu F; Xu L; Cao A; Guan J; Tang S; Duan X
    Nano Lett; 2018 May; 18(5):2903-2911. PubMed ID: 29608857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon-Based Fiber Materials as Implantable Depth Neural Electrodes.
    Fu X; Li G; Niu Y; Xu J; Wang P; Zhou Z; Ye Z; Liu X; Xu Z; Yang Z; Zhang Y; Lei T; Zhang B; Li Q; Cao A; Jiang T; Duan X
    Front Neurosci; 2021; 15():771980. PubMed ID: 35002602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance compatibility of multichannel silicon microelectrode systems for neural recording and stimulation: design criteria, tests, and recommendations.
    Martínez Santiesteban FM; Swanson SD; Noll DC; Anderson DJ
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):547-58. PubMed ID: 16532782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface.
    Romanelli P; Piangerelli M; Ratel D; Gaude C; Costecalde T; Puttilli C; Picciafuoco M; Benabid A; Torres N
    J Neurosurg; 2019 Apr; 130(4):1166-1179. PubMed ID: 29749917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PTFOS: flexible and absorbable intracranial electrodes for magnetic resonance imaging.
    Bonmassar G; Fujimoto K; Golby AJ
    PLoS One; 2012; 7(9):e41187. PubMed ID: 22984396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the neuron-electrode interface for chronic bioelectronic interfacing.
    Keogh C
    Neurosurg Focus; 2020 Jul; 49(1):E7. PubMed ID: 32610294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene Encapsulated Copper Microwires as Highly MRI Compatible Neural Electrodes.
    Zhao S; Liu X; Xu Z; Ren H; Deng B; Tang M; Lu L; Fu X; Peng H; Liu Z; Duan X
    Nano Lett; 2016 Dec; 16(12):7731-7738. PubMed ID: 27802387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene in the Design and Engineering of Next-Generation Neural Interfaces.
    Kostarelos K; Vincent M; Hebert C; Garrido JA
    Adv Mater; 2017 Nov; 29(42):. PubMed ID: 28901588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional MRI Safety and Artifacts during Deep Brain Stimulation: Experience in 102 Patients.
    Boutet A; Rashid T; Hancu I; Elias GJB; Gramer RM; Germann J; Dimarzio M; Li B; Paramanandam V; Prasad S; Ranjan M; Coblentz A; Gwun D; Chow CT; Maciel R; Soh D; Fiveland E; Hodaie M; Kalia SK; Fasano A; Kucharczyk W; Pilitsis J; Lozano AM
    Radiology; 2019 Oct; 293(1):174-183. PubMed ID: 31385756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous FMRI and electrophysiology in the rodent brain.
    Pan WJ; Thompson G; Magnuson M; Majeed W; Jaeger D; Keilholz S
    J Vis Exp; 2010 Aug; (42):. PubMed ID: 20811324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.