These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 34507355)

  • 1. Genomic profiling of a randomized trial of interferon-α vs hydroxyurea in MPN reveals mutation-specific responses.
    Knudsen TA; Skov V; Stevenson K; Werner L; Duke W; Laurore C; Gibson CJ; Nag A; Thorner AR; Wollison B; Hansen DL; Ellervik C; El Fassi D; de Stricker K; Ocias LF; Brabrand M; Bjerrum OW; Overgaard UM; Frederiksen M; Kristensen TK; Kruse TA; Thomassen M; Mourits-Andersen T; Severinsen MT; Stentoft J; Starklint J; Neuberg DS; Kjaer L; Larsen TS; Hasselbalch HC; Lindsley RC; Mullally A
    Blood Adv; 2022 Apr; 6(7):2107-2119. PubMed ID: 34507355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myeloproliferative neoplasms treated with hydroxyurea, pegylated interferon alpha-2A or ruxolitinib: clinicohematologic responses, quality-of-life changes and safety in the real-world setting.
    Gill H; Leung GMK; Yim R; Lee P; Pang HH; Ip HW; Leung RYY; Li J; Panagiotou G; Ma ESK; Kwong YL
    Hematology; 2020 Dec; 25(1):247-257. PubMed ID: 32567517
    [No Abstract]   [Full Text] [Related]  

  • 3. Clinical and molecular response to interferon-α therapy in essential thrombocythemia patients with CALR mutations.
    Verger E; Cassinat B; Chauveau A; Dosquet C; Giraudier S; Schlageter MH; Ianotto JC; Yassin MA; Al-Dewik N; Carillo S; Legouffe E; Ugo V; Chomienne C; Kiladjian JJ
    Blood; 2015 Dec; 126(24):2585-91. PubMed ID: 26486786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coexisting driver mutations in MPN: clinical and molecular characteristics of a series of 11 patients.
    De Roeck L; Michaux L; Debackere K; Lierman E; Vandenberghe P; Devos T
    Hematology; 2018 Dec; 23(10):785-792. PubMed ID: 29993347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing IFN Alpha Therapy against Myeloproliferative Neoplasms.
    Hermange G; Cournède PH; Plo I
    J Pharmacol Exp Ther; 2023 Oct; 387(1):31-43. PubMed ID: 37391225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interferon alpha-2 treatment reduces circulating neutrophil extracellular trap levels in myeloproliferative neoplasms.
    Massarenti L; Knudsen TA; Enevold C; Skov V; Kjaer L; Larsen MK; Larsen TS; Hansen DL; Hasselbalch HC; Nielsen CH
    Br J Haematol; 2023 Jul; 202(2):318-327. PubMed ID: 37211985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-burden TP53 mutations in chronic phase of myeloproliferative neoplasms: association with age, hydroxyurea administration, disease type and JAK2 mutational status.
    Kubesova B; Pavlova S; Malcikova J; Kabathova J; Radova L; Tom N; Tichy B; Plevova K; Kantorova B; Fiedorova K; Slavikova M; Bystry V; Kissova J; Gisslinger B; Gisslinger H; Penka M; Mayer J; Kralovics R; Pospisilova S; Doubek M
    Leukemia; 2018 Feb; 32(2):450-461. PubMed ID: 28744014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The relationship between symptom burden and hematologic responses after treatment with interferon/hydroxyurea in patients with polycythemia vera].
    Liu D; Xu ZF; Qin TJ; Qu SQ; Sun XJ; Li B; Pan LJ; Xiao ZJ
    Zhonghua Xue Ye Xue Za Zhi; 2021 Aug; 42(8):635-641. PubMed ID: 34547868
    [No Abstract]   [Full Text] [Related]  

  • 9. Clinicopathological differences exist between CALR- and JAK2-mutated myeloproliferative neoplasms despite a similar molecular landscape: data from targeted next-generation sequencing in the diagnostic laboratory.
    Agarwal R; Blombery P; McBean M; Jones K; Fellowes A; Doig K; Forsyth C; Westerman DA
    Ann Hematol; 2017 May; 96(5):725-732. PubMed ID: 28161773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis.
    Rampal R; Al-Shahrour F; Abdel-Wahab O; Patel JP; Brunel JP; Mermel CH; Bass AJ; Pretz J; Ahn J; Hricik T; Kilpivaara O; Wadleigh M; Busque L; Gilliland DG; Golub TR; Ebert BL; Levine RL
    Blood; 2014 May; 123(22):e123-33. PubMed ID: 24740812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential Dynamics of CALR Mutant Allele Burden in Myeloproliferative Neoplasms during Interferon Alfa Treatment.
    Kjær L; Cordua S; Holmström MO; Thomassen M; Kruse TA; Pallisgaard N; Larsen TS; de Stricker K; Skov V; Hasselbalch HC
    PLoS One; 2016; 11(10):e0165336. PubMed ID: 27764253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of an NGS-based 28-gene panel in myeloproliferative neoplasms reveals distinct mutation patterns in essential thrombocythaemia, primary myelofibrosis and polycythaemia vera.
    Delic S; Rose D; Kern W; Nadarajah N; Haferlach C; Haferlach T; Meggendorfer M
    Br J Haematol; 2016 Nov; 175(3):419-426. PubMed ID: 27447873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Targeted Next-Generation Sequencing Assay to Detect Diagnostically Relevant Mutations of JAK2, CALR, and MPL in Myeloproliferative Neoplasms.
    Frawley T; O'Brien CP; Conneally E; Vandenberghe E; Percy M; Langabeer SE; Haslam K
    Genet Test Mol Biomarkers; 2018 Feb; 22(2):98-103. PubMed ID: 29323541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias.
    Abdel-Wahab O; Manshouri T; Patel J; Harris K; Yao J; Hedvat C; Heguy A; Bueso-Ramos C; Kantarjian H; Levine RL; Verstovsek S
    Cancer Res; 2010 Jan; 70(2):447-52. PubMed ID: 20068184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms: primary myelofibrosis, essential thrombocythemia, polycythemia vera, and myeloproliferative neoplasm, unclassifiable.
    Kim SY; Im K; Park SN; Kwon J; Kim JA; Lee DS
    Am J Clin Pathol; 2015 May; 143(5):635-44. PubMed ID: 25873496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limited efficacy of hydroxyurea in lowering of the JAK2 V617F allele burden.
    Larsen TS; Pallisgaard N; de Stricker K; Møller MB; Hasselbalch HC
    Hematology; 2009 Feb; 14(1):11-5. PubMed ID: 19154659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interferon Alpha Has a Strong Anti-tumor Effect in Philadelphia-negative Myeloproliferative Neoplasms.
    Mondello P; Di Mirto C; Cuzzocrea S; Arrigo C; Mian M; Pitini V
    Clin Lymphoma Myeloma Leuk; 2019 Aug; 19(8):e489-e495. PubMed ID: 31231012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Second malignancies in hydroxyurea and interferon-treated Philadelphia-negative myeloproliferative neoplasms.
    Hansen IO; Sørensen AL; Hasselbalch HC
    Eur J Haematol; 2017 Jan; 98(1):75-84. PubMed ID: 27471124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. JAK2V617F but not CALR mutations confer increased molecular responses to interferon-α via JAK1/STAT1 activation.
    Czech J; Cordua S; Weinbergerova B; Baumeister J; Crepcia A; Han L; Maié T; Costa IG; Denecke B; Maurer A; Schubert C; Feldberg K; Gezer D; Brümmendorf TH; Müller-Newen G; Mayer J; Racil Z; Kubesova B; Knudsen T; Sørensen AL; Holmström M; Kjær L; Skov V; Larsen TS; Hasselbalch HC; Chatain N; Koschmieder S
    Leukemia; 2019 Apr; 33(4):995-1010. PubMed ID: 30470838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic variation in IL28B (IFNL3) and response to interferon-alpha treatment in myeloproliferative neoplasms.
    Lindgren M; Samuelsson J; Nilsson L; Knutsen H; Ghanima W; Westin J; Johansson PL; Andréasson B
    Eur J Haematol; 2018 May; 100(5):419-425. PubMed ID: 29369421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.