These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 34507532)

  • 21. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data.
    Park S; Soh J; Lee H
    BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DeepDRA: Drug repurposing using multi-omics data integration with autoencoders.
    Mohammadzadeh-Vardin T; Ghareyazi A; Gharizadeh A; Abbasi K; Rabiee HR
    PLoS One; 2024; 19(7):e0307649. PubMed ID: 39058696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting Drug Response Based on Multi-Omics Fusion and Graph Convolution.
    Peng W; Chen T; Dai W
    IEEE J Biomed Health Inform; 2022 Mar; 26(3):1384-1393. PubMed ID: 34347616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GraphCDR: a graph neural network method with contrastive learning for cancer drug response prediction.
    Liu X; Song C; Huang F; Fu H; Xiao W; Zhang W
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34727569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance.
    Choi J; Park S; Ahn J
    Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CTDN (Convolutional Temporal Based Deep- Neural Network): An Improvised Stacked Hybrid Computational Approach for Anticancer Drug Response Prediction.
    Singh DP; Kaushik B
    Comput Biol Chem; 2023 Aug; 105():107868. PubMed ID: 37257399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Beyond the limitation of targeted therapy: Improve the application of targeted drugs combining genomic data with machine learning.
    Miao R; Chen HH; Dang Q; Xia LY; Yang ZY; He MF; Hao ZF; Liang Y
    Pharmacol Res; 2020 Sep; 159():104932. PubMed ID: 32473309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ensembled machine learning framework for drug sensitivity prediction.
    Sharma A; Rani R
    IET Syst Biol; 2020 Feb; 14(1):39-46. PubMed ID: 31931480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature.
    Chang Y; Park H; Yang HJ; Lee S; Lee KY; Kim TS; Jung J; Shin JM
    Sci Rep; 2018 Jun; 8(1):8857. PubMed ID: 29891981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Prediction of cancer drug sensitivity based on genomic feature distribution alignment and drug structure information].
    Lian L; Yang X
    Sheng Wu Gong Cheng Xue Bao; 2024 Jul; 40(7):2235-2245. PubMed ID: 39044587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene-centric multi-omics integration with convolutional encoders for cancer drug response prediction.
    Lee M; Kim PJ; Joe H; Kim HG
    Comput Biol Med; 2022 Dec; 151(Pt A):106192. PubMed ID: 36327883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif.
    Hirohara M; Saito Y; Koda Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):526. PubMed ID: 30598075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal fusion of genotype and drug embeddings in predicting cancer drug response.
    Nguyen T; Campbell A; Kumar A; Amponsah E; Fiterau M; Shahriyari L
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38754407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer.
    Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y
    Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drug Response Prediction as a Link Prediction Problem.
    Stanfield Z; Coşkun M; Koyutürk M
    Sci Rep; 2017 Jan; 7():40321. PubMed ID: 28067293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DualGCN: a dual graph convolutional network model to predict cancer drug response.
    Ma T; Liu Q; Li H; Zhou M; Jiang R; Zhang X
    BMC Bioinformatics; 2022 Apr; 23(Suppl 4):129. PubMed ID: 35428192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How much can deep learning improve prediction of the responses to drugs in cancer cell lines?
    Chen Y; Zhang L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34529029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DROEG: a method for cancer drug response prediction based on omics and essential genes integration.
    Wu P; Sun R; Fahira A; Chen Y; Jiangzhou H; Wang K; Yang Q; Dai Y; Pan D; Shi Y; Wang Z
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715269
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of drug response in multilayer networks based on fusion of multiomics data.
    Yu L; Zhou D; Gao L; Zha Y
    Methods; 2021 Aug; 192():85-92. PubMed ID: 32798653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SYNDEEP: a deep learning approach for the prediction of cancer drugs synergy.
    Torkamannia A; Omidi Y; Ferdousi R
    Sci Rep; 2023 Apr; 13(1):6184. PubMed ID: 37061563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.