BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34507736)

  • 21. Antioxidant action and enzyme activity modulation by bioaccessible polyphenols from jambolan (Syzygium cumini (L.) Skeels).
    Sousa MM; Lima RMT; Lima A; Reis AC; Cavalcante AACM; Sattler JAG; Almeida-Muradian LB; Lima Neto JS; Moreira-Araujo RSDR; Nogueira NDN
    Food Chem; 2021 Nov; 363():130353. PubMed ID: 34147898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Infusion of gingerols into candied mango enhances shelf-life by inhibiting browning and associated quality parameters during storage.
    Shukla A; Das C; Goud VV
    Food Chem; 2020 Jun; 316():126354. PubMed ID: 32058195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of pre-treatments on the antioxidant potential of phenolic extracts from barley malt rootlets.
    Budaraju S; Mallikarjunan K; Annor G; Schoenfuss T; Raun R
    Food Chem; 2018 Nov; 266():31-37. PubMed ID: 30381191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of the nixtamalization process on the protein bioaccessibility of white and red sorghum flours during in vitro gastrointestinal digestion.
    Cabrera-Ramírez AH; Luzardo-Ocampo I; Ramírez-Jiménez AK; Morales-Sánchez E; Campos-Vega R; Gaytán-Martínez M
    Food Res Int; 2020 Aug; 134():109234. PubMed ID: 32517913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of the phenolic content, profile, and antioxidant activity of seeds from nine tree peony (Paeonia section Moutan DC.) species native to China.
    Zhang XX; Shi QQ; Ji D; Niu LX; Zhang YL
    Food Res Int; 2017 Jul; 97():141-148. PubMed ID: 28578034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Vitro Bioaccessibility and Effect of Mangifera indica (Ataulfo) Leaf Extract on Induced Dyslipidemia.
    Sandoval-Gallegos EM; Ramírez-Moreno E; Lucio JG; Arias-Rico J; Cruz-Cansino N; Ortiz MI; Cariño-Cortés R
    J Med Food; 2018 Jan; 21(1):47-56. PubMed ID: 28850305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antioxidant capacity and major phenol compounds of horticultural plant materials not usually used.
    Burri SCM; Ekholm A; Håkansson Å; Tornberg E; Rumpunen K
    J Funct Foods; 2017 Nov; 38(Pt A):119-127. PubMed ID: 29129982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic profiling of antioxidants constituents in Artemisia selengensis leaves.
    Zhang L; Tu ZC; Wang H; Fu ZF; Wen QH; Fan D
    Food Chem; 2015 Nov; 186():123-32. PubMed ID: 25976801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid.
    Rui L; Xie M; Hu B; Zhou L; Yin D; Zeng X
    Carbohydr Polym; 2017 Oct; 173():473-481. PubMed ID: 28732889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioaccessibility of phenolic compounds following in vitro large intestine fermentation of nuts for human consumption.
    Rocchetti G; Chiodelli G; Giuberti G; Lucini L
    Food Chem; 2018 Apr; 245():633-640. PubMed ID: 29287419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice.
    Kwaw E; Ma Y; Tchabo W; Apaliya MT; Wu M; Sackey AS; Xiao L; Tahir HE
    Food Chem; 2018 Jun; 250():148-154. PubMed ID: 29412905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microwave-assisted extraction for recovery of polyphenolic antioxidants from ripe mango (
    Pal CBT; Jadeja GC
    Food Sci Technol Int; 2020 Jan; 26(1):78-92. PubMed ID: 31466477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro bioaccessibility of Al, Cu, Cd, and Pb following simulated gastro-intestinal digestion and total content of these metals in different Brazilian brands of yerba mate tea.
    Schmite BFP; Bitobrovec A; Hacke ACM; Pereira RP; Weinert PL; Dos Anjos VE
    Food Chem; 2019 May; 281():285-293. PubMed ID: 30658759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of ripening on the in vitro antioxidant capacity and bioaccessibility of mango cv. 'Ataulfo' phenolics.
    Quirós-Sauceda AE; Sañudo-Barajas JA; Vélez-de la Rocha R; Domínguez-Avila JA; Ayala-Zavala JF; Villegas-Ochoa MA; González-Aguilar GA
    J Food Sci Technol; 2019 Apr; 56(4):2073-2082. PubMed ID: 30996441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Q-TOF LC/MS identification and UHPLC-Online ABTS antioxidant activity guided mapping of barley polyphenols.
    Rao S; Santhakumar AB; Chinkwo KA; Blanchard CL
    Food Chem; 2018 Nov; 266():323-328. PubMed ID: 30381193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of drying method on volatile compounds, phenolic profile and antioxidant capacity of guava powders.
    Nunes JC; Lago MG; Castelo-Branco VN; Oliveira FR; Torres AG; Perrone D; Monteiro M
    Food Chem; 2016 Apr; 197(Pt A):881-90. PubMed ID: 26617030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sapucaia nut (Lecythis pisonis Cambess) and its by-products: A promising and underutilized source of bioactive compounds. Part II: Phenolic compounds profile.
    Demoliner F; de Britto Policarpi P; Vasconcelos LFL; Vitali L; Micke GA; Block JM
    Food Res Int; 2018 Oct; 112():434-442. PubMed ID: 30131155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro health promoting properties of antioxidant dietary fiber extracted from spent coffee (Coffee arabica L.) grounds.
    Vázquez-Sánchez K; Martinez-Saez N; Rebollo-Hernanz M; Del Castillo MD; Gaytán-Martínez M; Campos-Vega R
    Food Chem; 2018 Sep; 261():253-259. PubMed ID: 29739591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse extract against food-borne pathogens.
    Zhao Y; Chen M; Zhao Z; Yu S
    Food Chem; 2015 Oct; 185():112-8. PubMed ID: 25952848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nutraceutical compounds: Echinoids, flavonoids, xanthones and caffeine identified and quantitated in the leaves of Coffea arabica trees from three regions of Brazil.
    de Almeida RF; Trevisan MTS; Thomaziello RA; Breuer A; Klika KD; Ulrich CM; Owen RW
    Food Res Int; 2019 Jan; 115():493-503. PubMed ID: 30599970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.