These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34507913)

  • 1. Isopropanol production with reutilization of glucose-derived CO
    Subagyo DCH; Shimizu R; Orita I; Fukui T
    J Biosci Bioeng; 2021 Nov; 132(5):479-486. PubMed ID: 34507913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Insight into the Role of the Calvin Cycle: Reutilization of CO2 Emitted through Sugar Degradation.
    Shimizu R; Dempo Y; Nakayama Y; Nakamura S; Bamba T; Fukusaki E; Fukui T
    Sci Rep; 2015 Jul; 5():11617. PubMed ID: 26130086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microaerobic insights into production of polyhydroxyalkanoates containing 3-hydroxyhexanoate via native reverse β-oxidation from glucose in Ralstonia eutropha H16.
    Huong KH; Orita I; Fukui T
    Microb Cell Fact; 2024 Jan; 23(1):21. PubMed ID: 38221622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the Calvin-Benson-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production.
    Li Z; Xin X; Xiong B; Zhao D; Zhang X; Bi C
    Microb Cell Fact; 2020 Dec; 19(1):228. PubMed ID: 33308236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of phase-dependent transcriptomic changes and Rubisco-mediated CO2 fixation into poly (3-hydroxybutyrate) under heterotrophic condition in Ralstonia eutropha H16 based on RNA-seq and gene deletion analyses.
    Shimizu R; Chou K; Orita I; Suzuki Y; Nakamura S; Fukui T
    BMC Microbiol; 2013 Jul; 13():169. PubMed ID: 23879744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production.
    Marc J; Grousseau E; Lombard E; Sinskey AJ; Gorret N; Guillouet SE
    Metab Eng; 2017 Jul; 42():74-84. PubMed ID: 28591561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (R/S)-lactate/2-hydroxybutyrate dehydrogenases in and biosynthesis of block copolyesters by Ralstonia eutropha.
    Ishihara S; Orita I; Matsumoto K; Fukui T
    Appl Microbiol Biotechnol; 2023 Dec; 107(24):7557-7569. PubMed ID: 37773219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two NADH-dependent (S)-3-hydroxyacyl-CoA dehydrogenases from polyhydroxyalkanoate-producing Ralstonia eutropha.
    Segawa M; Wen C; Orita I; Nakamura S; Fukui T
    J Biosci Bioeng; 2019 Mar; 127(3):294-300. PubMed ID: 30243533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isopropanol production from carbon dioxide in Cupriavidus necator in a pressurized bioreactor.
    Garrigues L; Maignien L; Lombard E; Singh J; Guillouet SE
    N Biotechnol; 2020 May; 56():16-20. PubMed ID: 31731039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates.
    Park SJ; Jang YA; Lee H; Park AR; Yang JE; Shin J; Oh YH; Song BK; Jegal J; Lee SH; Lee SY
    Metab Eng; 2013 Nov; 20():20-8. PubMed ID: 23973656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas fermentation combined with water electrolysis for production of polyhydroxyalkanoate copolymer from carbon dioxide by engineered Ralstonia eutropha.
    Di Stadio G; Orita I; Nakamura R; Fukui T
    Bioresour Technol; 2024 Feb; 394():130266. PubMed ID: 38159815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isopropanol production with engineered Cupriavidus necator as bioproduction platform.
    Grousseau E; Lu J; Gorret N; Guillouet SE; Sinskey AJ
    Appl Microbiol Biotechnol; 2014 May; 98(9):4277-90. PubMed ID: 24604499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and activity of the Calvin-Benson-Bassham cycle transcriptional regulator CbbR from Acidithiobacillus ferrooxidans in Ralstonia eutropha.
    Esparza M; Jedlicki E; Dopson M; Holmes DS
    FEMS Microbiol Lett; 2015 Aug; 362(15):fnv108. PubMed ID: 26152700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ralstonia eutropha H16 in progress: Applications beside PHAs and establishment as production platform by advanced genetic tools.
    Raberg M; Volodina E; Lin K; Steinbüchel A
    Crit Rev Biotechnol; 2018 Jun; 38(4):494-510. PubMed ID: 29233025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of acetoacetyl-CoA reduction step in Ralstonia eutropha for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from structurally unrelated compounds.
    Zhang M; Kurita S; Orita I; Nakamura S; Fukui T
    Microb Cell Fact; 2019 Aug; 18(1):147. PubMed ID: 31466527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RubisCO selection using the vigorously aerobic and metabolically versatile bacterium Ralstonia eutropha.
    Satagopan S; Tabita FR
    FEBS J; 2016 Aug; 283(15):2869-80. PubMed ID: 27261087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reliance of glycerol utilization by Cupriavidus necator on CO
    Strittmatter CS; Eggers J; Biesgen V; Pauels I; Becker F; Steinbüchel A
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2541-2555. PubMed ID: 35325274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Ralstonia eutropha for the production of polyhydroxyalkanoates from sucrose.
    Park SJ; Jang YA; Noh W; Oh YH; Lee H; David Y; Baylon MG; Shin J; Yang JE; Choi SY; Lee SH; Lee SY
    Biotechnol Bioeng; 2015 Mar; 112(3):638-43. PubMed ID: 25258020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of mutation points in Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose-utilization ability in wild strain H16 for polyhydroxyalkanoate production.
    Orita I; Iwazawa R; Nakamura S; Fukui T
    J Biosci Bioeng; 2012 Jan; 113(1):63-9. PubMed ID: 22014784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.