BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 34508101)

  • 1. Mammary-specific expression of Trim24 establishes a mouse model of human metaplastic breast cancer.
    Shah VV; Duncan AD; Jiang S; Stratton SA; Allton KL; Yam C; Jain A; Krause PM; Lu Y; Cai S; Tu Y; Zhou X; Zhang X; Jiang Y; Carroll CL; Kang Z; Liu B; Shen J; Gagea M; Manu SM; Huo L; Gilcrease M; Powell RT; Guo L; Stephan C; Davies PJ; Parker-Thornburg J; Lozano G; Behringer RR; Piwnica-Worms H; Chang JT; Moulder SL; Barton MC
    Nat Commun; 2021 Sep; 12(1):5389. PubMed ID: 34508101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathway activity profiling of growth factor receptor network and stemness pathways differentiates metaplastic breast cancer histological subtypes.
    McQuerry JA; Jenkins DF; Yost SE; Zhang Y; Schmolze D; Johnson WE; Yuan Y; Bild AH
    BMC Cancer; 2019 Sep; 19(1):881. PubMed ID: 31488082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pan-cancer analysis reveals TAp63-regulated oncogenic lncRNAs that promote cancer progression through AKT activation.
    Napoli M; Li X; Ackerman HD; Deshpande AA; Barannikov I; Pisegna MA; Bedrosian I; Mitsch J; Quinlan P; Thompson A; Rajapakshe K; Coarfa C; Gunaratne PH; Marchion DC; Magliocco AM; Tsai KY; Flores ER
    Nat Commun; 2020 Oct; 11(1):5156. PubMed ID: 33056990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Effectiveness of an mTOR-Based Systemic Therapy Regimen in Advanced, Metaplastic and Nonmetaplastic Triple-Negative Breast Cancer.
    Basho RK; Yam C; Gilcrease M; Murthy RK; Helgason T; Karp DD; Meric-Bernstam F; Hess KR; Valero V; Albarracin C; Litton JK; Chavez-MacGregor M; Hong D; Kurzrock R; Hortobagyi GN; Janku F; Moulder SL
    Oncologist; 2018 Nov; 23(11):1300-1309. PubMed ID: 30139837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prognostic and functional importance of the engraftment-associated genes in the patient-derived xenograft models of triple-negative breast cancers.
    Moon HG; Oh K; Lee J; Lee M; Kim JY; Yoo TK; Seo MW; Park AK; Ryu HS; Jung EJ; Kim N; Jeong S; Han W; Lee DS; Noh DY
    Breast Cancer Res Treat; 2015 Nov; 154(1):13-22. PubMed ID: 26438141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KAT6A Acetylation of SMAD3 Regulates Myeloid-Derived Suppressor Cell Recruitment, Metastasis, and Immunotherapy in Triple-Negative Breast Cancer.
    Yu B; Luo F; Sun B; Liu W; Shi Q; Cheng SY; Chen C; Chen G; Li Y; Feng H
    Adv Sci (Weinh); 2021 Oct; 8(20):e2100014. PubMed ID: 34392614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of gene expression in human cancers by TRIM24.
    Appikonda S; Thakkar KN; Barton MC
    Drug Discov Today Technol; 2016 Mar; 19():57-63. PubMed ID: 27769359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer.
    Powell E; Shao J; Yuan Y; Chen HC; Cai S; Echeverria GV; Mistry N; Decker KF; Schlosberg C; Do KA; Edwards JR; Liang H; Piwnica-Worms D; Piwnica-Worms H
    Breast Cancer Res; 2016 Jan; 18(1):13. PubMed ID: 26818199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cell-surface anchored serine protease TMPRSS13 promotes breast cancer progression and resistance to chemotherapy.
    Murray AS; Hyland TE; Sala-Hamrick KE; Mackinder JR; Martin CE; Tanabe LM; Varela FA; List K
    Oncogene; 2020 Oct; 39(41):6421-6436. PubMed ID: 32868877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WBP2 Downregulation Inhibits Proliferation by Blocking YAP Transcription and the EGFR/PI3K/Akt Signaling Pathway in Triple Negative Breast Cancer.
    Song H; Wu T; Xie D; Li D; Hua K; Hu J; Fang L
    Cell Physiol Biochem; 2018; 48(5):1968-1982. PubMed ID: 30092563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor-initiating function of nucleostemin-enriched mammary tumor cells.
    Lin T; Meng L; Li Y; Tsai RY
    Cancer Res; 2010 Nov; 70(22):9444-52. PubMed ID: 21045149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TIPIN depletion leads to apoptosis in breast cancer cells.
    Baldeyron C; Brisson A; Tesson B; Némati F; Koundrioukoff S; Saliba E; De Koning L; Martel E; Ye M; Rigaill G; Meseure D; Nicolas A; Gentien D; Decaudin D; Debatisse M; Depil S; Cruzalegui F; Pierré A; Roman-Roman S; Tucker GC; Dubois T
    Mol Oncol; 2015 Oct; 9(8):1580-98. PubMed ID: 26004086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecdysoneless Overexpression Drives Mammary Tumorigenesis through Upregulation of C-MYC and Glucose Metabolism.
    Mohapatra BC; Mirza S; Bele A; Gurumurthy CB; Raza M; Saleem I; Storck MD; Sarkar A; Kollala SS; Shukla SK; Southekal S; Wagner KU; Qiu F; Lele SM; Alsaleem MA; Rakha EA; Guda C; Singh PK; Cardiff RD; Band H; Band V
    Mol Cancer Res; 2022 Sep; 20(9):1391-1404. PubMed ID: 35675041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TRIM24 links glucose metabolism with transformation of human mammary epithelial cells.
    Pathiraja TN; Thakkar KN; Jiang S; Stratton S; Liu Z; Gagea M; Shi X; Shah PK; Phan L; Lee MH; Andersen J; Stampfer M; Barton MC
    Oncogene; 2015 May; 34(22):2836-45. PubMed ID: 25065590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of PI3K and MEK inhibitors yields durable remission in PDX models of PIK3CA-mutated metaplastic breast cancers.
    Coussy F; El Botty R; Lavigne M; Gu C; Fuhrmann L; Briaux A; de Koning L; Dahmani A; Montaudon E; Morisset L; Huguet L; Sourd L; Painsec P; Chateau-Joubert S; Larcher T; Vacher S; Melaabi S; Salomon AV; Marangoni E; Bieche I
    J Hematol Oncol; 2020 Feb; 13(1):13. PubMed ID: 32087759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulin-like growth factor receptor signaling in breast tumor epithelium protects cells from endoplasmic reticulum stress and regulates the tumor microenvironment.
    Obr AE; Kumar S; Chang YJ; Bulatowicz JJ; Barnes BJ; Birge RB; Lazzarino DA; Gallagher E; LeRoith D; Wood TL
    Breast Cancer Res; 2018 Nov; 20(1):138. PubMed ID: 30458886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel cancer gene variants and gene fusions of triple-negative breast cancers (TNBCs) reveal their molecular diversity conserved in the patient-derived xenograft (PDX) model.
    Jung J; Jang K; Ju JM; Lee E; Lee JW; Kim HJ; Kim J; Lee SB; Ko BS; Son BH; Lee HJ; Gong G; Ahn SY; Choi JK; Singh SR; Chang S
    Cancer Lett; 2018 Aug; 428():127-138. PubMed ID: 29684420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition.
    Zhang H; Cohen AL; Krishnakumar S; Wapnir IL; Veeriah S; Deng G; Coram MA; Piskun CM; Longacre TA; Herrler M; Frimannsson DO; Telli ML; Dirbas FM; Matin AC; Dairkee SH; Larijani B; Glinsky GV; Bild AH; Jeffrey SS
    Breast Cancer Res; 2014 Apr; 16(2):R36. PubMed ID: 24708766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammary gland-specific ablation of focal adhesion kinase reduces the incidence of p53-mediated mammary tumour formation.
    van Miltenburg MH; van Nimwegen MJ; Tijdens I; Lalai R; Kuiper R; Klarenbeek S; Schouten PC; de Vries A; Jonkers J; van de Water B
    Br J Cancer; 2014 May; 110(11):2747-55. PubMed ID: 24809783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression.
    Horiuchi D; Camarda R; Zhou AY; Yau C; Momcilovic O; Balakrishnan S; Corella AN; Eyob H; Kessenbrock K; Lawson DA; Marsh LA; Anderton BN; Rohrberg J; Kunder R; Bazarov AV; Yaswen P; McManus MT; Rugo HS; Werb Z; Goga A
    Nat Med; 2016 Nov; 22(11):1321-1329. PubMed ID: 27775705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.