These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34508259)

  • 41. Massively parallel Cas13 screens reveal principles for guide RNA design.
    Wessels HH; Méndez-Mancilla A; Guo X; Legut M; Daniloski Z; Sanjana NE
    Nat Biotechnol; 2020 Jun; 38(6):722-727. PubMed ID: 32518401
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Increasing the performance of pooled CRISPR-Cas9 drop-out screening.
    Cross BC; Lawo S; Archer CR; Hunt JR; Yarker JL; Riccombeni A; Little AS; McCarthy NJ; Moore JD
    Sci Rep; 2016 Aug; 6():31782. PubMed ID: 27545104
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design and Evaluation of Guide RNA Transcripts with a 3'-Terminal HDV Ribozyme to Enhance CRISPR-Based Gene Inactivation.
    Berkhout B; Gao Z; Herrera-Carrillo E
    Methods Mol Biol; 2021; 2167():205-224. PubMed ID: 32712922
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid and Efficient Gene Deletion by CRISPR/Cas9.
    Neldeborg S; Lin L; Stougaard M; Luo Y
    Methods Mol Biol; 2019; 1961():233-247. PubMed ID: 30912049
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design of Multiplexing CRISPR/Cas9 Constructs for Plant Genome Engineering Using the GoldenBraid DNA Assembly Standard.
    Vazquez-Vilar M; Juarez P; Bernabé-Orts JM; Orzaez D
    Methods Mol Biol; 2022; 2379():27-44. PubMed ID: 35188654
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Systematic decomposition of sequence determinants governing CRISPR/Cas9 specificity.
    Fu R; He W; Dou J; Villarreal OD; Bedford E; Wang H; Hou C; Zhang L; Wang Y; Ma D; Chen Y; Gao X; Depken M; Xu H
    Nat Commun; 2022 Jan; 13(1):474. PubMed ID: 35078987
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Construction of an Inducible CRISPR/Cas9 System for CXCR4 Gene and Demonstration of its Effects on MKN-45 Cells.
    Peng Y; Yang T; Tang X; Chen F; Wang S
    Cell Biochem Biophys; 2020 Mar; 78(1):23-30. PubMed ID: 31875277
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae.
    Zhang Y; Wang J; Wang Z; Zhang Y; Shi S; Nielsen J; Liu Z
    Nat Commun; 2019 Mar; 10(1):1053. PubMed ID: 30837474
    [TBL] [Abstract][Full Text] [Related]  

  • 49. EasyGuide Plasmids Support in Vivo Assembly of gRNAs for CRISPR/Cas9 Applications in
    Jacobus AP; Barreto JA; de Bem LS; Menegon YA; Fier Í; Bueno JGR; Dos Santos LV; Gross J
    ACS Synth Biol; 2022 Nov; 11(11):3886-3891. PubMed ID: 36257021
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Guide RNA Design for Genome-Wide CRISPR Screens in Yarrowia lipolytica.
    Ramesh A; Wheeldon I
    Methods Mol Biol; 2021; 2307():123-137. PubMed ID: 33847986
    [TBL] [Abstract][Full Text] [Related]  

  • 51. multicrispr: gRNA design for prime editing and parallel targeting of thousands of targets.
    Bhagwat AM; Graumann J; Wiegandt R; Bentsen M; Welker J; Kuenne C; Preussner J; Braun T; Looso M
    Life Sci Alliance; 2020 Nov; 3(11):. PubMed ID: 32907859
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design.
    Smith JD; Suresh S; Schlecht U; Wu M; Wagih O; Peltz G; Davis RW; Steinmetz LM; Parts L; St Onge RP
    Genome Biol; 2016 Mar; 17():45. PubMed ID: 26956608
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High content analysis platform for optimization of lipid mediated CRISPR-Cas9 delivery strategies in human cells.
    Steyer B; Carlson-Stevermer J; Angenent-Mari N; Khalil A; Harkness T; Saha K
    Acta Biomater; 2016 Apr; 34():143-158. PubMed ID: 26747759
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computational Tools and Resources for CRISPR/Cas Genome Editing.
    Li C; Chu W; Gill RA; Sang S; Shi Y; Hu X; Yang Y; Zaman QU; Zhang B
    Genomics Proteomics Bioinformatics; 2023 Feb; 21(1):108-126. PubMed ID: 35341983
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CRISPR/Cas9-Enabled Multiplex Genome Editing and Its Application.
    Minkenberg B; Wheatley M; Yang Y
    Prog Mol Biol Transl Sci; 2017; 149():111-132. PubMed ID: 28712493
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PARA: A New Platform for the Rapid Assembly of gRNA Arrays for Multiplexed CRISPR Technologies.
    Yuan G; Martin S; Hassan MM; Tuskan GA; Yang X
    Cells; 2022 Aug; 11(16):. PubMed ID: 36010544
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome Editing with CRISPR-Cas9: Can It Get Any Better?
    Haeussler M; Concordet JP
    J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A CRISPR/Cas9 guidance RNA screen platform for HIV provirus disruption and HIV/AIDS gene therapy in astrocytes.
    Huang Z; Nair M
    Sci Rep; 2017 Jul; 7(1):5955. PubMed ID: 28729655
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Robust Protocol for CRISPR-Cas9 Gene Editing in Human Suspension Cell Lines.
    Wardyn JD; Chan ASY; Jeyasekharan AD
    Curr Protoc; 2021 Nov; 1(11):e286. PubMed ID: 34748280
    [TBL] [Abstract][Full Text] [Related]  

  • 60. gRNA validation for wheat genome editing with the CRISPR-Cas9 system.
    Arndell T; Sharma N; Langridge P; Baumann U; Watson-Haigh NS; Whitford R
    BMC Biotechnol; 2019 Oct; 19(1):71. PubMed ID: 31684940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.