These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 34508284)

  • 1. Towards sustainable agriculture: rhizosphere microbiome engineering.
    Bano S; Wu X; Zhang X
    Appl Microbiol Biotechnol; 2021 Oct; 105(19):7141-7160. PubMed ID: 34508284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives.
    Kumawat KC; Razdan N; Saharan K
    Microbiol Res; 2022 Jan; 254():126901. PubMed ID: 34700186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Management of abiotic stresses by microbiome-based engineering of the rhizosphere.
    Tyagi R; Pradhan S; Bhattacharjee A; Dubey S; Sharma S
    J Appl Microbiol; 2022 Aug; 133(2):254-272. PubMed ID: 35352450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering.
    Afridi MS; Fakhar A; Kumar A; Ali S; Medeiros FHV; Muneer MA; Ali H; Saleem M
    Microbiol Res; 2022 Dec; 265():127199. PubMed ID: 36137486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of Distinct Rhizosphere Bacteria Drives Phosphorus and Nitrogen Mineralization in Oilseed Rape under Field Conditions.
    Lidbury IDEA; Raguideau S; Borsetto C; Murphy ARJ; Bottrill A; Liu S; Stark R; Fraser T; Goodall A; Jones A; Bending GD; Tibbet M; Hammond JP; Quince C; Scanlan DJ; Pandhal J; Wellington EMH
    mSystems; 2022 Aug; 7(4):e0002522. PubMed ID: 35862821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture.
    Rai S; Omar AF; Rehan M; Al-Turki A; Sagar A; Ilyas N; Sayyed RZ; Hasanuzzaman M
    Planta; 2022 Dec; 257(2):27. PubMed ID: 36583789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combating biotic stresses in plants by synthetic microbial communities: Principles, applications and challenges.
    Pradhan S; Tyagi R; Sharma S
    J Appl Microbiol; 2022 Nov; 133(5):2742-2759. PubMed ID: 36039728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbiome for sustainable agriculture: a review with special reference to the corn production system.
    Jat SL; Suby SB; Parihar CM; Gambhir G; Kumar N; Rakshit S
    Arch Microbiol; 2021 Aug; 203(6):2771-2793. PubMed ID: 33884458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health.
    Priya P; Aneesh B; Harikrishnan K
    J Microbiol Methods; 2021 Jun; 185():106215. PubMed ID: 33839214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in Soil Engineering: Sustainable Strategies for Rhizosphere and Bulk Soil Microbiome Enrichment.
    Araujo R
    Front Biosci (Landmark Ed); 2022 Jun; 27(6):195. PubMed ID: 35748271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production.
    Kumar A; Dubey A
    J Adv Res; 2020 Jul; 24():337-352. PubMed ID: 32461810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From concept to reality: Transforming agriculture through innovative rhizosphere engineering for plant health and productivity.
    Solanki MK; Joshi NC; Singh PK; Singh SK; Santoyo G; Basilio de Azevedo LC; Kumar A
    Microbiol Res; 2024 Feb; 279():127553. PubMed ID: 38007891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rhizosphere microbiome: Plant-microbial interactions for resource acquisition.
    Pantigoso HA; Newberger D; Vivanco JM
    J Appl Microbiol; 2022 Nov; 133(5):2864-2876. PubMed ID: 36648151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Communities in the Rhizosphere at Different Growth Stages of Maize Cultivated in Soil Under Conventional and Conservation Agricultural Practices.
    Navarro-Noya YE; Chávez-Romero Y; Hereira-Pacheco S; de León Lorenzana AS; Govaerts B; Verhulst N; Dendooven L
    Microbiol Spectr; 2022 Apr; 10(2):e0183421. PubMed ID: 35254138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture.
    Qin Y; Druzhinina IS; Pan X; Yuan Z
    Biotechnol Adv; 2016 Nov; 34(7):1245-1259. PubMed ID: 27587331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The root microbiome: Community assembly and its contributions to plant fitness.
    Bai B; Liu W; Qiu X; Zhang J; Zhang J; Bai Y
    J Integr Plant Biol; 2022 Feb; 64(2):230-243. PubMed ID: 35029016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. It takes three to tango: the importance of microbes, host plant, and soil management to elucidate manipulation strategies for the plant microbiome.
    Tosi M; Mitter EK; Gaiero J; Dunfield K
    Can J Microbiol; 2020 Jul; 66(7):413-433. PubMed ID: 32396748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability.
    Phour M; Sindhu SS
    Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the significance of rhizosphere: Implications for plant growth, stress response, and sustainable agriculture.
    Solomon W; Janda T; Molnár Z
    Plant Physiol Biochem; 2024 Jan; 206():108290. PubMed ID: 38150841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New frontiers in agriculture productivity: Optimised microbial inoculants and in situ microbiome engineering.
    Qiu Z; Egidi E; Liu H; Kaur S; Singh BK
    Biotechnol Adv; 2019 Nov; 37(6):107371. PubMed ID: 30890361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.