These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34508713)

  • 21. The effect of extracellular ice and cryoprotective agents on the water permeability parameters of human sperm plasma membrane during freezing.
    Devireddy RV; Swanlund DJ; Roberts KP; Pryor JL; Bischof JC
    Hum Reprod; 2000 May; 15(5):1125-35. PubMed ID: 10783365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protective effect of intracellular ice during freezing?
    Acker JP; McGann LE
    Cryobiology; 2003 Apr; 46(2):197-202. PubMed ID: 12686211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Freezing Responses in DMSO-Based Cryopreservation of Human iPS Cells: Aggregates Versus Single Cells.
    Li R; Yu G; Azarin SM; Hubel A
    Tissue Eng Part C Methods; 2018 May; 24(5):289-299. PubMed ID: 29478388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-term (24h) cooling of ovarian fragments in the presence of permeable cryoprotectants prior to freezing: Two unsuccesful IVF-cycles and spontaneous pregnancy with baby born after re-transplantation.
    Isachenko V; Morgenstern B; Todorov P; Isachenko E; Mallmann P; Hanstein B; Rahimi G
    Cryobiology; 2020 Apr; 93():115-120. PubMed ID: 32014535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular ice formation in mouse zygotes and early morulae vs. cooling rate and temperature-experimental vs. theory.
    Jin B; Seki S; Paredes E; Qiu J; Shi Y; Zhang Z; Ma C; Jiang S; Li J; Yuan F; Wang S; Shao X; Mazur P
    Cryobiology; 2016 Oct; 73(2):181-6. PubMed ID: 27481511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extra- and intra-cellular ice formation of red seabream (Pagrus major) embryos at different cooling rates.
    Li J; Zhang LL; Liu QH; Xu XZ; Xiao ZZ; Ma DY; Xu SH; Xue QZ
    Cryobiology; 2009 Aug; 59(1):48-53. PubMed ID: 19375414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active control of the nucleation temperature enhances freezing survival of multipotent mesenchymal stromal cells.
    Lauterboeck L; Hofmann N; Mueller T; Glasmacher B
    Cryobiology; 2015 Dec; 71(3):384-90. PubMed ID: 26499840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Principles of Ice-Free Cryopreservation by Vitrification.
    Fahy GM; Wowk B
    Methods Mol Biol; 2021; 2180():27-97. PubMed ID: 32797408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cryopreservation of umbilical cord blood: 2. Tolerance of CD34(+) cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing.
    Hunt CJ; Armitage SE; Pegg DE
    Cryobiology; 2003 Feb; 46(1):76-87. PubMed ID: 12623030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification of Intracellular Ice Formation and Recrystallization During Freeze-Thaw Cycles and Their Relationship with the Viability of Pig Iliac Endothelium Cells.
    Liu X; Zhao G; Shu Z; Niu D; Zhang Z; Zhou P; Cao Y; Gao D
    Biopreserv Biobank; 2016 Dec; 14(6):511-519. PubMed ID: 27532801
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryopreservation: Vitrification and Controlled Rate Cooling.
    Hunt CJ
    Methods Mol Biol; 2017; 1590():41-77. PubMed ID: 28353262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of cryopreservation media thermophysical characteristics after ultra-rapid cooling through differential scanning calorimetry.
    Amini M; Benson JD
    Cryobiology; 2024 Jul; 116():104939. PubMed ID: 38971573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ice formation and its elimination in cryopreservation of bovine oocytes.
    Abdelhady AW; Mittan-Moreau DW; Crane PL; McLeod MJ; Cheong SH; Thorne RE
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cryopreservation by slow cooling of rat neuronal cells.
    Robert MC; Juan de Paz L; Graf DA; Gazzin S; Tiribelli C; Bottai H; Rodriguez JV
    Cryobiology; 2016 Jun; 72(3):191-7. PubMed ID: 27164058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative assessment of intracellular/extracellular dimethyl sulfoxide concentrations during freezing with low-temperature confocal Raman micro-spectroscopy.
    Zhan T; Niu W; Cui M; Han H; Wang D; Xu Y
    Analyst; 2022 Dec; 148(1):47-60. PubMed ID: 36367051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cryobiological parameters of multipotent stromal cells obtained from different sources.
    Lauterboeck L; Wolkers WF; Glasmacher B
    Cryobiology; 2017 Feb; 74():93-102. PubMed ID: 27916562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Post-cryopreservation viability of the benthic freshwater diatom Planothidium frequentissimum depends on light levels.
    Buhmann MT; Day JG; Kroth PG
    Cryobiology; 2013 Aug; 67(1):23-9. PubMed ID: 23628642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low cryoprotectant concentrations and fast cooling for nematode cryostorage.
    Irdani T; Scotto C; Roversi PF
    Cryobiology; 2011 Aug; 63(1):12-6. PubMed ID: 21524646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of cooling rate and cryoprotectant concentration on intracellular ice formation of small abalone (Haliotis diversicolor) eggs.
    Yang CY; Yeh YH; Lee PT; Lin TT
    Cryobiology; 2013 Aug; 67(1):7-16. PubMed ID: 23619025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of optimal techniques for cryopreservation of human platelets. I. Platelet activation during cold storage (at 22 and 8 degrees C) and cryopreservation.
    Gao DY; Neff K; Xiao HY; Matsubayashi H; Cui XD; Bonderman P; Bonderman D; Harvey K; McIntyre JA; Critser J; Miraglia CC; Reid T
    Cryobiology; 1999 May; 38(3):225-35. PubMed ID: 10328912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.