BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34508780)

  • 1. Crystal structure of human cysteamine dioxygenase provides a structural rationale for its function as an oxygen sensor.
    Wang Y; Shin I; Li J; Liu A
    J Biol Chem; 2021 Oct; 297(4):101176. PubMed ID: 34508780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the nonheme iron center of cysteamine dioxygenase and its interaction with substrates.
    Wang Y; Davis I; Chan Y; Naik SG; Griffith WP; Liu A
    J Biol Chem; 2020 Aug; 295(33):11789-11802. PubMed ID: 32601061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in the Second Coordination Sphere Tailor the Substrate Specificity and Reactivity of Thiol Dioxygenases.
    Fernandez RL; Juntunen ND; Brunold TC
    Acc Chem Res; 2022 Sep; 55(17):2480-2490. PubMed ID: 35994511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging roles for thiol dioxygenases as oxygen sensors.
    Gunawardana DM; Heathcote KC; Flashman E
    FEBS J; 2022 Sep; 289(18):5426-5439. PubMed ID: 34346181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic Investigation of Cysteamine Dioxygenase.
    Fernandez RL; Dillon SL; Stipanuk MH; Fox BG; Brunold TC
    Biochemistry; 2020 Jul; 59(26):2450-2458. PubMed ID: 32510930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic investigation of iron(III) cysteamine dioxygenase in the presence of substrate (analogs): implications for the nature of substrate-bound reaction intermediates.
    Fernandez RL; Juntunen ND; Fox BG; Brunold TC
    J Biol Inorg Chem; 2021 Dec; 26(8):947-955. PubMed ID: 34580769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved N-terminal cysteine dioxygenases transduce responses to hypoxia in animals and plants.
    Masson N; Keeley TP; Giuntoli B; White MD; Puerta ML; Perata P; Hopkinson RJ; Flashman E; Licausi F; Ratcliffe PJ
    Science; 2019 Jul; 365(6448):65-69. PubMed ID: 31273118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Crystal Structure of Cysteamine Dioxygenase Reveals the Origin of the Large Substrate Scope of This Vital Mammalian Enzyme.
    Fernandez RL; Elmendorf LD; Smith RW; Bingman CA; Fox BG; Brunold TC
    Biochemistry; 2021 Dec; 60(48):3728-3737. PubMed ID: 34762398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase.
    Dominy JE; Simmons CR; Hirschberger LL; Hwang J; Coloso RM; Stipanuk MH
    J Biol Chem; 2007 Aug; 282(35):25189-98. PubMed ID: 17581819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding human thiol dioxygenase enzymes: structure to function, and biology to pathology.
    Sarkar B; Kulharia M; Mantha AK
    Int J Exp Pathol; 2017 Apr; 98(2):52-66. PubMed ID: 28439920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adapting to oxygen: 3-Hydroxyanthrinilate 3,4-dioxygenase employs loop dynamics to accommodate two substrates with disparate polarities.
    Yang Y; Liu F; Liu A
    J Biol Chem; 2018 Jul; 293(27):10415-10424. PubMed ID: 29784877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen-Sensing Protein Cysteamine Dioxygenase from Mandarin Fish Involved in the Arg/N-Degron Pathway and
    Liu W; He J; Li Z; Weng S; Guo C; He J
    Viruses; 2023 Jul; 15(8):. PubMed ID: 37631990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cobalt(II)-Substituted Cysteamine Dioxygenase Oxygenation Proceeds through a Cobalt(III)-Superoxo Complex.
    Li J; Duan R; Liu A
    J Am Chem Soc; 2024 Jun; ():. PubMed ID: 38941563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, X-ray Structures, Electronic Properties, and O
    Fischer AA; Stracey N; Lindeman SV; Brunold TC; Fiedler AT
    Inorg Chem; 2016 Nov; 55(22):11839-11853. PubMed ID: 27801576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of 3-mercaptopropionic acid dioxygenase with a substrate analog reveals bidentate substrate binding at the iron center.
    York NJ; Lockart MM; Sardar S; Khadka N; Shi W; Stenkamp RE; Zhang J; Kiser PD; Pierce BS
    J Biol Chem; 2021; 296():100492. PubMed ID: 33662397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiol dioxygenases: unique families of cupin proteins.
    Stipanuk MH; Simmons CR; Karplus PA; Dominy JE
    Amino Acids; 2011 Jun; 41(1):91-102. PubMed ID: 20195658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of the divergent oxygenation reactions catalyzed by the rieske nonheme iron oxygenase carbazole 1,9a-dioxygenase.
    Inoue K; Usami Y; Ashikawa Y; Noguchi H; Umeda T; Yamagami-Ashikawa A; Horisaki T; Uchimura H; Terada T; Nakamura S; Shimizu K; Habe H; Yamane H; Fujimoto Z; Nojiri H
    Appl Environ Microbiol; 2014 May; 80(9):2821-32. PubMed ID: 24584240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic Measurements to Investigate the Oxygen-Sensing Properties of Plant Cysteine Oxidases.
    Dirr A; Gunawardana DM; Flashman E
    Methods Mol Biol; 2023; 2648():207-230. PubMed ID: 37039993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol dioxygenases: from structures to functions.
    Perri M; Licausi F
    Trends Biochem Sci; 2024 Jun; 49(6):545-556. PubMed ID: 38622038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cofactor Biogenesis in Cysteamine Dioxygenase: C-F Bond Cleavage with Genetically Incorporated Unnatural Tyrosine.
    Wang Y; Griffith WP; Li J; Koto T; Wherritt DJ; Fritz E; Liu A
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8149-8153. PubMed ID: 29752763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.