These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34508843)

  • 1. Effect of inflow conditioning for dry powder inhalers.
    Singh G; Lowe A; Azeem A; Cheng S; Chan HK; Walenga R; Kourmatzis A
    Int J Pharm; 2021 Oct; 608():121085. PubMed ID: 34508843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A counter-swirl design concept for dry powder inhalers.
    Chaugule V; Dos Reis LG; Fletcher DF; Young PM; Traini D; Soria J
    Int J Pharm; 2024 Jan; 650():123694. PubMed ID: 38081562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From laminar to turbulent flow in a dry powder inhaler: The effect of simple design modifications.
    Singh G; Tang P; Cheng S; Chan HK; Kourmatzis A
    Int J Pharm; 2022 Mar; 616():121556. PubMed ID: 35131350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of Low Air Volume Dry Powder Inhalers (LV-DPI) when Aerosolizing Excipient Enhanced Growth (EEG) Surfactant Powder Formulations.
    Boc S; Momin MAM; Farkas DR; Longest W; Hindle M
    AAPS PharmSciTech; 2021 Apr; 22(4):135. PubMed ID: 33860378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFD-DEM investigation of the effects of aperture size for a capsule-based dry powder inhaler.
    Zhu Q; Kakhi M; Jayasundara C; Walenga R; Behara SRB; Chan HK; Yang R
    Int J Pharm; 2023 Nov; 647():123556. PubMed ID: 37890648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application.
    Kolanjiyil AV; Kleinstreuer C; Sadikot RT
    Comput Biol Med; 2017 May; 84():247-253. PubMed ID: 27836120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capsule-Based dry powder inhaler evaluation using CFD-DEM simulations and next generation impactor data.
    Almeida LC; Bharadwaj R; Eliahu A; Wassgren CR; Nagapudi K; Muliadi AR
    Eur J Pharm Sci; 2022 Aug; 175():106226. PubMed ID: 35643378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the mouthpiece and chamber of Turbuhaler® on the aerosolization of API-only powder formulations.
    Zhu Q; Gou D; Chan HK; Kourmatzis A; Yang R
    Int J Pharm; 2023 Apr; 637():122871. PubMed ID: 36948474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a New Inhaler for High-Efficiency Dispersion of Spray-Dried Powders Using Computational Fluid Dynamics (CFD) Modeling.
    Longest W; Farkas D
    AAPS J; 2019 Feb; 21(2):25. PubMed ID: 30734133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 2: Air inlet size.
    Coates MS; Chan HK; Fletcher DF; Raper JA
    J Pharm Sci; 2006 Jun; 95(6):1382-92. PubMed ID: 16625656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying Agglomerate-to-Wall Impaction in Dry Powder Inhalers.
    Azeem A; Singh G; Li L; Chan HK; Yang R; Cheng S; Kourmatzis A
    Pharm Res; 2023 Jan; 40(1):307-319. PubMed ID: 36471024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of grid design on the performance of 3D-printed dry powder inhalers.
    Ye Y; Ma Y; Fan Z; Zhu J
    Int J Pharm; 2022 Nov; 627():122230. PubMed ID: 36162608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing Aerosolization Using Computational Fluid Dynamics in a Pediatric Air-Jet Dry Powder Inhaler.
    Bass K; Farkas D; Longest W
    AAPS PharmSciTech; 2019 Nov; 20(8):329. PubMed ID: 31676991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Use of Computational Fluid Dynamics (CFD) Modelling to Design Improved Dry Powder Inhalers.
    Fletcher DF; Chaugule V; Gomes Dos Reis L; Young PM; Traini D; Soria J
    Pharm Res; 2021 Feb; 38(2):277-288. PubMed ID: 33575958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining experimental and computational techniques to understand and improve dry powder inhalers.
    Chaugule V; Wong CY; Inthavong K; Fletcher DF; Young PM; Soria J; Traini D
    Expert Opin Drug Deliv; 2022 Jan; 19(1):59-73. PubMed ID: 34989629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating inter-patient variability of dispersion in dry powder inhalers using CFD-DEM simulations.
    Benque B; Khinast JG
    Eur J Pharm Sci; 2021 Jan; 156():105574. PubMed ID: 32980431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning aerosol performance using the multibreath Orbital® dry powder inhaler device: controlling delivery parameters and aerosol performance via modification of puck orifice geometry.
    Zhu B; Young PM; Ong HX; Crapper J; Flodin C; Qiao EL; Phillips G; Traini D
    J Pharm Sci; 2015 Jul; 104(7):2169-76. PubMed ID: 25931324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of device design on the aerosolization of a carrier-based dry powder inhaler--a case study on Aerolizer(®) Foradile (®).
    Zhou QT; Tong Z; Tang P; Citterio M; Yang R; Chan HK
    AAPS J; 2013 Apr; 15(2):511-22. PubMed ID: 23371759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initial Development of an Air-Jet Dry Powder Inhaler for Rapid Delivery of Pharmaceutical Aerosols to Infants.
    Howe C; Hindle M; Bonasera S; Rani V; Longest PW
    J Aerosol Med Pulm Drug Deliv; 2021 Feb; 34(1):57-70. PubMed ID: 32758026
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.