BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34509016)

  • 1. Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: A review.
    Wang X; Cheng H; Ye G; Fan J; Yao F; Wang Y; Jiao Y; Zhu W; Huang H; Ye D
    Chemosphere; 2022 Jan; 287(Pt 2):131995. PubMed ID: 34509016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignocellulose-based adsorbents: A spotlight review of the effective parameters on carbon dioxide capture process.
    Rouzitalab Z; Maklavany DM; Jafarinejad S; Rashidi A
    Chemosphere; 2020 May; 246():125756. PubMed ID: 31918088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of agricultural residue biochars to removal of toxic gases emitted from chemical plants: A review.
    Cho SH; Lee S; Kim Y; Song H; Lee J; Tsang YF; Chen WH; Park YK; Lee DJ; Jung S; Kwon EE
    Sci Total Environ; 2023 Apr; 868():161655. PubMed ID: 36649775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of post-combustion carbon dioxide capture technologies using activated carbon.
    Mukherjee A; Okolie JA; Abdelrasoul A; Niu C; Dalai AK
    J Environ Sci (China); 2019 Sep; 83():46-63. PubMed ID: 31221387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.
    Sethupathi S; Bashir MJ; Akbar ZA; Mohamed AR
    Waste Manag Res; 2015 Apr; 33(4):303-12. PubMed ID: 25804669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption Capacity and Desorption Efficiency of Activated Carbon for Odors from Medical Waste.
    Park JE; Jo ES; Lee GB; Lee SE; Hong BU
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A strategy for the enhancement of trapping efficiency of gaseous benzene on activated carbon (AC) through modification of their surface functionalities.
    Kim WK; Younis SA; Kim KH
    Environ Pollut; 2021 Feb; 270():116239. PubMed ID: 33341551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamental adsorption characteristics of carbonaceous adsorbents for 1,2,3,4-tetrachlorobenzene in a model gas of an incineration plant.
    Inoue K; Kawamoto K
    Environ Sci Technol; 2005 Aug; 39(15):5844-50. PubMed ID: 16124324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test.
    Nam S; Namkoong W; Kang JH; Park JK; Lee N
    Waste Manag; 2013 Oct; 33(10):2091-8. PubMed ID: 23684695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption characteristics of the carbonaceous adsorbents for organic compounds in a model exhaust gas from thermal treatment processing.
    Kawamoto K
    J Air Waste Manag Assoc; 2022 May; 72(5):463-473. PubMed ID: 35294315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of activated carbon using urea to enhance the adsorption of dioxins.
    Zhan MX; Liu YW; Ye WW; Chen T; Jiao WT
    Environ Res; 2022 Mar; 204(Pt B):112035. PubMed ID: 34509483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of thirteen kinds of adsorbents for removal of hydrogen sulfide, methanethiol, methyl sulfide, trimethylamine, and ammonia.
    Miyoshi T; Tanada S; Boki K
    Sangyo Igaku; 1977 Jan; 19(1):2-7. PubMed ID: 199769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu/ACF adsorbent modified by non-thermal plasma for simultaneous adsorption-oxidation of H
    Yang X; Li K; Wang C; Wang F; Sun X; Ma Y; Li Y; Shi L; Ning P
    J Environ Sci (China); 2023 May; 127():641-651. PubMed ID: 36522093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and comparison of inertinite-derived adsorbent with conventional adsorbents.
    Gangupomu RH; Kositkanawuth K; Sattler ML; Ramirez D; Dennis BH; MacDonnell FM; Billo R; Priest JW
    J Air Waste Manag Assoc; 2012 May; 62(5):489-99. PubMed ID: 22696799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study on flue gas purifying of MSW incineration using in-pipe jet adsorption techniques.
    Zhong Z; Jin B; Huang Y; Zhou H; Zhang M
    Waste Manag; 2008; 28(10):1923-32. PubMed ID: 18061433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on application of activated carbons for carbon dioxide capture: present performance, preparation, and surface modification for further improvement.
    Abd AA; Othman MR; Kim J
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43329-43364. PubMed ID: 34189695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.
    Zhang S; Shao T; Kose HS; Karanfil T
    Environ Sci Technol; 2010 Aug; 44(16):6377-83. PubMed ID: 20704238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption characteristics of activated carbon fibers (ACFs) for toluene: application in respiratory protection.
    Balanay JA; Bartolucci AA; Lungu CT
    J Occup Environ Hyg; 2014; 11(3):133-43. PubMed ID: 24521063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partitioning and removal of dioxin-like congeners in flue gases treated with activated carbon adsorption.
    Chi KH; Chang SH; Huang CH; Huang HC; Chang MB
    Chemosphere; 2006 Aug; 64(9):1489-98. PubMed ID: 16488462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of activated carbon for removal of pesticides from water: case study.
    Zieliński B; Miądlicki P; Przepiórski J
    Sci Rep; 2022 Dec; 12(1):20869. PubMed ID: 36460673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.