These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 34509018)

  • 1. Multi-objective optimization of a biomass gasification to generate electricity and desalinated water using Grey Wolf Optimizer and artificial neural network.
    Musharavati F; Khoshnevisan A; Alirahmi SM; Ahmadi P; Khanmohammadi S
    Chemosphere; 2022 Jan; 287(Pt 2):131980. PubMed ID: 34509018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of a near-zero-emission energy system for the production of desalinated water and cooling using waste energy of fuel cells.
    Lu J; Abed AM; Nag K; Fayed M; Deifalla A; Al-Zahrani A; Ghamry NA; Galal AM
    Chemosphere; 2023 Sep; 336():139035. PubMed ID: 37244560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tri-objective optimization of a waste-to-energy plant with super critical carbon dioxide and multi-effect water desalination for building application based on biomass fuels.
    Zhu G; Tian C; Liu X; Yang Y; Wang S
    Chemosphere; 2023 Sep; 336():139108. PubMed ID: 37302493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction in environmental CO
    Hai T; Ali MA; Alizadeh A; Almojil SF; Almohana AI; Alali AF
    Chemosphere; 2023 Apr; 319():137847. PubMed ID: 36657576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exergoeconomic Analysis and Optimization of a Biomass Integrated Gasification Combined Cycle Based on Externally Fired Gas Turbine, Steam Rankine Cycle, Organic Rankine Cycle, and Absorption Refrigeration Cycle.
    Ren J; Xu C; Qian Z; Huang W; Wang B
    Entropy (Basel); 2024 Jun; 26(6):. PubMed ID: 38920520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Techno-economic optimization of a new waste-to-energy plant for electricity, cooling, and desalinated water using various biomass for emission reduction.
    Hai T; Ma X; Singh Chauhan B; Mahmoud S; Al-Kouz W; Tong J; Salah B
    Chemosphere; 2023 Oct; 338():139398. PubMed ID: 37406939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Techno-economic optimization and No
    Hai T; El-Shafay AS; Goyal V; Alshahri AH; Almujibah HR
    Chemosphere; 2023 Nov; 342():139782. PubMed ID: 37660791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning approach to predict the biofuel production via biomass gasification and natural gas integrating to develop a low-carbon and environmental-friendly design: Thermodynamic-conceptual assessment.
    Xia J; Yan G; Abed AM; Nag K; Galal AM; Deifalla A; Li J
    Chemosphere; 2023 Sep; 336():138985. PubMed ID: 37247675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance assessment and multiobjective optimization of a biomass waste-fired gasification combined cycle for emission reduction.
    Hai T; Alshahri AH; Mohammed AS; Sharma A; Almujibah HR; Mohammed Metwally AS; Ullah M
    Chemosphere; 2023 Sep; 334():138980. PubMed ID: 37207897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exergy, exergoeconomic optimization and exergoenvironmental analysis of a hybrid solar, wind, and marine energy power system: A strategy for carbon-free electrical production.
    Zainul R; Basem A; J Alfaker M; Sharma P; Kumar A; Al-Bahrani M; Elawady A; Abbas M; Fooladi H; Pandey S
    Heliyon; 2024 Aug; 10(16):e35171. PubMed ID: 39253151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exergoeconomic analysis and multi-objective optimization of ORC configurations via Taguchi-Grey Relational Methods.
    Özdemir Küçük E; Kılıç M
    Heliyon; 2023 Apr; 9(4):e15007. PubMed ID: 37064436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvised grey wolf optimizer assisted artificial neural network (IGWO-ANN) predictive models to accurately predict the permeate flux of desalination plants.
    Mahadeva R; Kumar M; Diwan A; Manik G; Dixit S; Das G; Gupta V; Sharma A
    Heliyon; 2024 Jul; 10(13):e34132. PubMed ID: 39071585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy, Exergy, Exergoeconomic and Emergy-Based Exergoeconomic (Emergoeconomic) Analyses of a Biomass Combustion Waste Heat Recovery Organic Rankine Cycle.
    Effatpanah SK; Ahmadi MH; Delbari SH; Lorenzini G
    Entropy (Basel); 2022 Jan; 24(2):. PubMed ID: 35205502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An innovative biomass-driven energy systems for green energy and freshwater production with less CO2 emission: Environmental and technical approaches.
    Bai Y; Lin H; M Abed A; Fayed M; Mahariq I; Salah B; Saleem W; Deifalla A
    Chemosphere; 2023 Sep; 334():139008. PubMed ID: 37230303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy, exergy, emergy, and economic evaluation of a novel two-stage solar Rankine power plant.
    Hosseini R; Babaelahi M; Rafat E
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):79140-79155. PubMed ID: 35705763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiobjective optimization of a hybrid electricity generation system based on waste energy of internal combustion engine and solar system for sustainable environment.
    Al-Hawary SIS; Ricardo Nuñez Alvarez J; Ali A; Kumar Tripathi A; Rahardja U; Al-Kharsan IH; Romero-Parra RM; Abdulameer Marhoon H; John V; Hussian W
    Chemosphere; 2023 Sep; 336():139269. PubMed ID: 37339704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy, Exergy, Exergoeconomic and Exergoenvironmental Impact Analyses and Optimization of Various Geothermal Power Cycle Configurations.
    Shamoushaki M; Aliehyaei M; Rosen MA
    Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power generation based on biomass by combined fermentation and gasification--a new concept derived from experiments and modelling.
    Methling T; Armbrust N; Haitz T; Speidel M; Poboss N; Braun-Unkhoff M; Dieter H; Kempter-Regel B; Kraaij G; Schliessmann U; Sterr Y; Wörner A; Hirth T; Riedel U; Scheffknecht G
    Bioresour Technol; 2014 Oct; 169():510-517. PubMed ID: 25086436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exergy and Exergoeconomic Analyses of a Byproduct Gas-Based Combined Cycle Power Plant with Air Blade Cooling.
    Liu X; Liu F; Huo Z; Zhang Q
    ACS Omega; 2022 Feb; 7(6):4908-4920. PubMed ID: 35187310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MBB-MOGWO: Modified Boltzmann-Based Multi-Objective Grey Wolf Optimizer.
    Liu J; Liu Z; Wu Y; Li K
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.