BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 34509167)

  • 41. Synthesis, antitumor, and apoptosis-inducing activities of novel 5-arylidenethiazolidine-2,4-dione derivatives: Histone deacetylases inhibitory activity and molecular docking study.
    Hamdi A; Elhusseiny WM; Othman DIA; Haikal A; Bakheit AH; El-Azab AS; Al-Agamy MHM; Abdel-Aziz AA
    Eur J Med Chem; 2022 Dec; 244():114827. PubMed ID: 36242988
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quinazolin-4(3H)-one-Based Hydroxamic Acids: Design, Synthesis and Evaluation of Histone Deacetylase Inhibitory Effects and Cytotoxicity.
    Hieu DT; Anh DT; Hai PT; Thuan NT; Huong LT; Park EJ; Young Ji A; Soon Kang J; Phuong Dung PT; Han SB; Nam NH
    Chem Biodivers; 2019 Apr; 16(4):e1800502. PubMed ID: 30653817
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of mTOR as a primary resistance factor of the IAP antagonist AT406 in hepatocellular carcinoma cells.
    Zhen MC; Wang FQ; Wu SF; Zhao YL; Liu PG; Yin ZY
    Oncotarget; 2017 Feb; 8(6):9466-9475. PubMed ID: 28036295
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pharmacological or transcriptional inhibition of both HDAC1 and 2 leads to cell cycle blockage and apoptosis via p21
    Zhou H; Cai Y; Liu D; Li M; Sha Y; Zhang W; Wang K; Gong J; Tang N; Huang A; Xia J
    Cell Prolif; 2018 Jun; 51(3):e12447. PubMed ID: 29484736
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Discovery of novel pyrazolopyrimidine derivatives as potent mTOR/HDAC bi-functional inhibitors via pharmacophore-merging strategy.
    Zhang M; Wei W; Peng C; Ma X; He X; Zhang H; Zhou M
    Bioorg Med Chem Lett; 2021 Oct; 49():128286. PubMed ID: 34314844
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design, Synthesis, biological Evaluation, and molecular docking studies of novel Pyrazolo[3,4-d]Pyrimidine derivative scaffolds as potent EGFR inhibitors and cell apoptosis inducers.
    Sherbiny FF; Bayoumi AH; El-Morsy AM; Sobhy M; Hagras M
    Bioorg Chem; 2021 Nov; 116():105325. PubMed ID: 34507234
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of trichostatin A on anti HepG2 liver carcinoma cells: inhibition of HDAC activity and activation of Wnt/β-Catenin signaling.
    Shi QQ; Zuo GW; Feng ZQ; Zhao LC; Luo L; You ZM; Li DY; Xia J; Li J; Chen DL
    Asian Pac J Cancer Prev; 2014; 15(18):7849-55. PubMed ID: 25292076
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design, synthesis and binding mode of interaction of novel small molecule o-hydroxy benzamides as HDAC3-selective inhibitors with promising antitumor effects in 4T1-Luc breast cancer xenograft model.
    Routholla G; Pulya S; Patel T; Adhikari N; Abdul Amin S; Paul M; Bhagavatula S; Biswas S; Jha T; Ghosh B
    Bioorg Chem; 2021 Dec; 117():105446. PubMed ID: 34717237
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anticancer Effect of Rh2, a Histone Deacetylase Inhibitor, in HepG2 Cells and HepG2 Cell-Derived Xenograft Tumors Occurs via the Inhibition of HDACs and Activation of the MAPK Signaling Pathway.
    Qiang SQ; Qin GC; Jing L; Qiang FZ; Mei QH; Long CD
    Asian Pac J Cancer Prev; 2021 Aug; 22(8):2529-2539. PubMed ID: 34452568
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design, Synthesis and Biological Evaluation of New HDAC1 and HDAC2 Inhibitors Endowed with Ligustrazine as a Novel Cap Moiety.
    Al-Sanea MM; Gotina L; Mohamed MF; Grace Thomas Parambi D; Gomaa HAM; Mathew B; Youssif BGM; Alharbi KS; Elsayed ZM; Abdelgawad MA; Eldehna WM
    Drug Des Devel Ther; 2020; 14():497-508. PubMed ID: 32103894
    [TBL] [Abstract][Full Text] [Related]  

  • 51. β-Carboline tethered cinnamoyl 2-aminobenzamides as class I selective HDAC inhibitors: Design, synthesis, biological activities and modelling studies.
    Namballa HK; Anchi P; Lakshmi Manasa K; Soni JP; Godugu C; Shankaraiah N; Kamal A
    Bioorg Chem; 2021 Dec; 117():105461. PubMed ID: 34753060
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design, synthesis, and biological evaluation of indole-based hydroxamic acid derivatives as histone deacetylase inhibitors.
    Jiang BE; Hu J; Liu H; Liu Z; Wen Y; Liu M; Zhang HK; Pang X; Yu LF
    Eur J Med Chem; 2022 Jan; 227():113893. PubMed ID: 34656899
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synergistic Anticancer Strategy of Sonodynamic Therapy Combined with PI-103 Against Hepatocellular Carcinoma.
    Yang H; Jing H; Han X; Tan H; Cheng W
    Drug Des Devel Ther; 2021; 15():531-542. PubMed ID: 33603343
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design, synthesis, biological evaluation and molecular docking study of novel thieno[3,2-d]pyrimidine derivatives as potent FAK inhibitors.
    Wang R; Yu S; Zhao X; Chen Y; Yang B; Wu T; Hao C; Zhao D; Cheng M
    Eur J Med Chem; 2020 Feb; 188():112024. PubMed ID: 31923858
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MLN0128, an ATP-competitive mTOR kinase inhibitor with potent in vitro and in vivo antitumor activity, as potential therapy for bone and soft-tissue sarcoma.
    Slotkin EK; Patwardhan PP; Vasudeva SD; de Stanchina E; Tap WD; Schwartz GK
    Mol Cancer Ther; 2015 Feb; 14(2):395-406. PubMed ID: 25519700
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Discovery of 5-aryl-3-thiophen-2-yl-1H-pyrazoles as a new class of Hsp90 inhibitors in hepatocellular carcinoma.
    Mohamady S; Ismail MI; Mogheith SM; Attia YM; Taylor SD
    Bioorg Chem; 2020 Jan; 94():103433. PubMed ID: 31785857
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis, inverse docking-assisted identification and in vitro biological characterization of Flavonol-based analogs of fisetin as c-Kit, CDK2 and mTOR inhibitors against melanoma and non-melanoma skin cancers.
    Roy T; Boateng ST; Banang-Mbeumi S; Singh PK; Basnet P; Chamcheu RN; Ladu F; Chauvin I; Spiegelman VS; Hill RA; Kousoulas KG; Nagalo BM; Walker AL; Fotie J; Murru S; Sechi M; Chamcheu JC
    Bioorg Chem; 2021 Feb; 107():104595. PubMed ID: 33450548
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Salirasib inhibits the growth of hepatocarcinoma cell lines in vitro and tumor growth in vivo through ras and mTOR inhibition.
    Charette N; De Saeger C; Lannoy V; Horsmans Y; Leclercq I; Stärkel P
    Mol Cancer; 2010 Sep; 9():256. PubMed ID: 20860815
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SLFN11 inhibits hepatocellular carcinoma tumorigenesis and metastasis by targeting RPS4X via mTOR pathway.
    Zhou C; Liu C; Liu W; Chen W; Yin Y; Li CW; Hsu JL; Sun J; Zhou Q; Li H; Hu B; Fu P; Atyah M; Ma Q; Xu Y; Dong Q; Hung MC; Ren N
    Theranostics; 2020; 10(10):4627-4643. PubMed ID: 32292519
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    Keshari AK; Singh AK; Raj V; Rai A; Trivedi P; Ghosh B; Kumar U; Rawat A; Kumar D; Saha S
    Drug Des Devel Ther; 2017; 11():1623-1642. PubMed ID: 28615927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.